
 

Alternating Current1 
Howard J. Fisher 

Although the topic of my talk is alternating current, I’d like us to begin with a few 
experiments using direct current.  Direct current is what batteries produce, but we shall 
obtain it from one of our venerable “EFB” power supplies.   

These preliminary experiments will exhibit Ohm’s Law, the law that asserts 
proportionality between the voltage applied to a conductor and the current that flows in 
it.  Nothing in the ideas of voltage or current themselves suggests that they should be 
proportional, nor does Ohm’s Law in any way explain the proportionality when it does 
exist.  We shall seek an explanation; but let us first observe that proportionality in 
practice. 

The “lead” in a lead pencil2 is a moderately good conductor of electricity.  I have 
sharpened this pencil at both ends and connected it to the variable supply.  I have a 

voltmeter to measure the voltage and an ammeter to measure the current.  Watch as I 
vary the applied voltage... 

 
1 Lecture given at St. John’s College, Santa Fe, on 26 April 2023 
2 Pencil lead consists primarily of carbon in the form of graphite. 
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And here is a graph of the measured values.  The straight line shows that the voltage 
is indeed proportional to the current.   

Another conductive material is nichrome, an alloy of nickel and chromium.  If we 
perform the same measurements on 3.4 inches of nichrome wire, we again get a straight 
line—but the slope of the line is smaller, meaning that less voltage was required to 

maintain the same current.  Our nichrome sample is evidently a better conductor than 
the pencil; but both exhibit the proportionality that constitutes Ohm’s Law.   

In this way we can rank any number of different conductors as better or poorer: 
better conductors yield a gentler slope, poorer conductors yield a steeper one.  The 
slope of the line, expressed as the quotient of voltage by current—V/I—is a measure of 
a conductor’s imperfection.  Modern terminology calls it the resistance; and if we 
represent resistance by the constant R, the equation  R =  V/I  is a mathematical 
expression of Ohm’s Law. 

We do not always prefer better conductors to worse ones.  When we wish to regulate 
current, for example, imperfect conductors are often exactly what we need; and since 
they then serve a positive purpose, they enjoy a positive name: instead of calling them 
“imperfect conductors” we call them “resistors.”  The slide shows resistors from the 
1920’s, the 1960’s, and today.   
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Most purposes, however, do call for good conductors; and among the best of these is 
copper.  Copper is such a good conductor that 150 feet of number 20 copper wire has 
less resistance than 3 inches of our nichrome wire.  Here is the graph.  Once again we 
have a straight line; showing that copper wire, too, exhibits the proportionality that 

constitutes Ohm’s Law.  As before, the slope measures the resistance of the sample; and 
note that even an excellent conductor like copper has some resistance—no conductor is 
perfect.  “Conductors” and “resistors” are not different species; they are all conductors, 
they differ only in degree. 

 
Measurement exercises like these are what nearly all instructional laboratories rely 

on to introduce Ohm’s Law; but they contain a logical flaw, which hardly anyone ever 
bothers to acknowledge.  The problem is that ordinary voltmeters include an internal 
resistor, and the scale markings of the meter are calculated by the manufacturer on the 
basis of that resistor’s value.  Thus the very design of the voltmeter already assumes 
Ohm’s Law; so we commit circular reasoning if we rely on that instrument to establish 
Ohm’s law.  Ohm’s Law actually rests on a sounder basis: it is the consequence of 
relations of energy. 

Maxwell defined voltage (his term was difference of potential ) as the energy required 
to transport one unit of electricity from one point to another, that is,  

𝑉𝑉 =
𝐸𝐸
𝑞𝑞

 , 

where E is the energy and q is the quantity of electricity transported.  But current is the rate 
of electricity transfer per unit time, or  

𝐼𝐼 =
𝑞𝑞
𝑡𝑡

 . 

Then the product of voltage and current will be 

𝑉𝑉 ∙ 𝐼𝐼 =
𝐸𝐸
𝑞𝑞
∙
𝑞𝑞
𝑡𝑡

=
𝐸𝐸
𝑡𝑡

 . 

Thus E is the (electrical) energy expended to maintain current I for time t.  
But whenever an electric current flows through a resistance, it generates heat.  We can 

measure the amount of heat produced by immersing the resistive element in a water 
calorimeter, and noting the temperature rise just as freshmen do in the first semester 
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laboratory.  We shall use nichrome wire as the resistance element, shown here on the left; 

and on the right is the electrical setup.  Notice that it does not use a voltmeter at all, so no 
question of circularity arises.   

We measure the temperature rise produced during the time of current flow; and look 
what happens when we graph the rate of temperature rise against the square of the current:  
we obtain a straight line, showing that the heat produced per unit time is proportional to 

the square of the current.  Expressing these results algebraically, if H is the heat produced in 
time t,  

𝐻𝐻
𝑡𝑡
∝ 𝐼𝐼2,      that is,      

𝐻𝐻
𝑡𝑡
∝
𝑞𝑞2

𝑡𝑡2
 ;  

or, expressed as an equation, 
𝐻𝐻
𝑡𝑡

= 𝐾𝐾
𝑞𝑞2

𝑡𝑡2
 

where K is a constant of proportionality.  Rearranging,  
𝐻𝐻
𝑞𝑞

= 𝐾𝐾
𝑞𝑞𝑡𝑡
𝑡𝑡2

= 𝐾𝐾
𝑞𝑞
𝑡𝑡

 . 

But recall Maxwell’s definition of potential difference, which we saw earlier: 

𝑉𝑉 =
𝐸𝐸
𝑞𝑞

 , 

where E was electrical energy.  Where does this electrical energy go?  If it is converted to heat, 
then E will be equal to H; and if that is so, we can combine the last two equations to obtain 
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𝑉𝑉 =
𝐸𝐸
𝑞𝑞

=
𝐻𝐻
𝑞𝑞

= 𝐾𝐾
𝑞𝑞
𝑡𝑡

= 𝐾𝐾𝐼𝐼          or           𝐾𝐾 =
𝑉𝑉
𝐼𝐼

 . 

But this is the very proportionality that constitutes Ohm’s Law, so the constant K must 
actually be the resistance R.  Thus Ohm’s Law—that is, the proportionality between voltage 
V and current I—arises insofar as electrical energy is converted to heat.  This conversion of 
energy is the explanation that Ohm’s Law stood in need of; and it is the real foundation of 
that law.   

Then since Ohm’s law can be independently demonstrated for the resistor which 
ordinary voltmeters contain, our previous use of the voltmeter was perfectly legitimate; 
and we need have no hesitation in employing the voltmeter as a measuring device.  But 
remember that whenever we do so we are assuming Ohm’s Law.  Consequently, 
whenever we employ the voltmeter in new circumstances we must be sure to ask 
whether Ohm’s Law has been shown to apply in those circumstances.  

 
{II} 

Now as I mentioned at the outset, the current used in our previous exercises was 
what we now call “direct current” or DC.  Direct current flows consistently in one 
direction.  But as most of you probably know, the kind of electric current we most often 
make use of in ordinary life, the current that energizes our household appliances and 
which supplies most of our indoor and outdoor lighting, is alternating current.  Its 
prevalence alone would make alternating current worthy of study from a societal point 
of view; but our interest will be different.  As we shall see, alternating current reveals 
several electrical phenomena whose existence we might never have suspected had we 
been restricted to direct current alone.  Phenomena related to these prompted Maxwell 
to pursue some highly consequential analogies, which will occupy our attention, too. 

Alternating current, AC, is so called because instead of flowing in a single direction 
like direct current, it continually reverses itself: first reaching a peak rate of flow in one 
direction, then, a fraction of a second later, reversing to reach an equal peak in the 
opposite direction.  The rate at which these reversals take place is the frequency of the 
current. 

The simplest way to produce alternating current is by rotating a loop of wire in a 
magnetic field, as Faraday did in his Twenty-ninth Series; his drawing is shown on the 
left, where ab is the axis of rotation.  Recall that when a wire moves across magnetic 

lines of force, a current is produced.  But in the course of one revolution of the 
rectangular loop, a leg like ef or cd reverses its direction of travel across those lines, so 
that the resulting current likewise changes direction every half-revolution.  Those 
repeated changes of direction were undesirable for Faraday’s purposes; and he 
employed the commutator, pictured on the right, to reverse the loop connections every 
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half turn and so negate the current’s own alternation.  But what for Faraday was a 
problem to be overcome will be, for us, the chief object of study.   

Here is a small mechanical generator, which I shall use as an 
alternating current source.  It is basically little more than 
Faraday’s rotating loop—without his commutator—but this loop 
consists not of a single winding but many; and in addition it has 
been fitted with an iron core.  The generator also contains its own 
permanent magnet instead of relying on the much weaker 
terrestrial magnetic field.  All these enhancements greatly 
increase the amount of current the generator can produce.  Let us 
first observe the periodic reversals that give alternating current 
its name. 

I have connected the generator to a galvanometer whose needle rests at center scale.  
Since the galvanometer can withstand only very small currents, I have also included a 

poor conductor (a resistor) to limit the current.  (In Faraday’s Third Series he used a wet 
string to achieve a similar purpose.)  I turn the crank and—of course, the galvanometer 
swings from side to side, every half-revolution.  But this raises the question, what kind 

of instrument can possibly measure alternating current, since the ammeter and 
voltmeter that we have been using are constructed exactly like this galvanometer and 
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would respond the same way: at low frequencies swinging back and forth, as we just 
saw; while at high frequencies hovering uselessly about the zero line, like this:  

There are a number of ways to make DC ammeters and voltmeters measure 
alternating current.  The simplest method uses the rectifying diode, pictured here.  This 

device conducts in only one direction; so the meter, instead of being exposed to 
successively reversing pulses of current, receives only those pulses having the chosen 
direction, and accordingly registers in one direction only, like this: 

But what does this relatively steady reading represent?  At these high speeds, the 
meter’s needle cannot keep up with the current’s rapid excursions between zero and 
peak value; the meter indicates only the average value of the pulsating current.  
Calculating that average is not difficult; you’ll find it in the handouts here on the table; 
and you are welcome to take a copy later.  But let me state at once that the average 
current turns out to be a fixed fraction of the peak current.  For our present purposes it 
doesn’t matter what that fraction is; whatever its value, our meter readings will be 
proportional to the peak values of current or voltage; and it is these peak values we 
shall be interested in.  So remember that even though the meter is steady, the 
alternating current (or voltage) in the circuit will be continuously oscillating between 
those positive and negative peaks.   

The AC ammeter and voltmeter, then, are just adaptations of the DC ammeter and 
voltmeter; and therefore the AC voltmeter, like its DC counterpart, assumes in its very 
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design that Ohm’s Law applies.  But exposure to alternating current would seem to be 
one of those “new circumstances” in which we have to ask whether Ohm’s Law does still 
apply.  So it is important to know that the calorimeter method I described earlier gives 
the same results for alternating current as it does for direct current.  Therefore Ohm’s 
Law will hold for the resistor in an AC voltmeter, too; and on that basis I will make free 
use of ordinary commercial AC meters in the work that follows.3   

Now, as we saw a moment ago, when the speed of the mechanical 
generator increases, both the frequency and the current increase 
together.  With the simple mechanical generator, therefore, we 
cannot control the strength of the current independently of the 
frequency.  This is a serious disadvantage for experimenting.  For 
that reason I will instead use this electronic generator to produce 
alternating currents at varying frequencies but with independently 
adjustable strengths. 

Our earlier experiments revealed the ratio of DC voltage to DC current as definitive of 
the property called resistance.  Does the ratio of AC voltage to AC current share that 
same significance?  We would certainly expect so, since, as I mentioned already, 
calorimeter measurements on nichrome wire give the same results for AC as for DC.  If 
the same is true for conductors generally, then measurements on copper wire should 
give the same straight line graph for AC that we earlier obtained using DC.  Let us test 
that expectation with our 150-foot length of copper wire.  And let me note that for these 
measurements I have strung it like a clothesline—75-feet out and back again, and 
therefore nearly straight except where it reverses at the middle.  I have connected the 
ends of the wire to the electronic generator; and once again I will subject the wire to a 
varying voltage and we will measure the resulting values of current.  But remember that 
we are now using alternating current, not direct current as we did before; and we are 
using AC meters, which have been adapted from DC meters in the way I described.  
Watch as I gradually increase the voltage...   

 
3 I will pass over an additional complication which the use of commercial instruments introduces.  For various 
practical reasons, standard AC ammeters and voltmeters are calibrated to read not the average value per cycle 
but rather about 90% of that average.  But since those readings are still proportional to the peak values, that fact 
will not affect our reasoning about the peak values. 
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And here is a graph of the results.4  The straight line shows that AC voltage and 
current are proportional in our copper wire, just as they were for DC.  So it appears that 

the ratio of voltage to current does indeed express the resistance of a conductor, 
whether the current is alternating or direct—just as we had anticipated. 

But these measurements were made at a definite frequency of alternating current.  
Will the resistance be the same at other frequencies?  Here are four of seven 
measurements I made over a frequency range between 30 and 200 cycles per second 
(modern terminology would say 30 to 200 Hz).  When all seven measurements are 

graphed, the horizontal line shows that the ratio of voltage to current is indeed the same 
throughout the range of frequencies.  Evidently the resistance of a conductor to 
alternating current is indifferent to frequency. 

 
4 The oscillator signal was sent through an audio amplifier in order to obtain the large currents recorded here. 
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But what if we were to modify this conductor by winding it into a coil?  You might not 
expect a mere change of configuration like that to make any difference; but in Faraday’s 
First Series—and even more in the Ninth—he obtained unexpected effects from just 
such a coil, effects which were even more pronounced when iron was introduced.   

An especially dramatic example is this one,  patterned after experiments in Faraday’s 
Ninth Series.  The device at the rear of the board consists of several hundred turns of 

copper wire, wound about an iron framework.  I have connected a small neon bulb 
across its terminals; the bulb requires about 90 volts to light up.  But the battery 
supplies only one-and-a-half volts, not nearly enough to light the bulb.  I make the 
connection, and of course the bulb doesn’t light.  Yet when I suddenly break the 
connection... the bulb flashes!  Evidently the coil developed a sizable voltage, much 
higher than the voltage of the battery itself, and sufficient to light the bulb.  But what is 
important to us is the fact that this occurred at the moment the connection was broken; 
that is, in conjunction with an abrupt cessation of the current.  It seems that the act of 
winding a conductor about an iron core makes the moment of change especially 
significant.  But alternating current is always changing!  So we might expect coils 
carrying AC to exhibit properties we did not encounter with DC. 

Let us then coil our copper wire about an iron bar, like this; today such devices are 
typically called “inductors.”  Again we measure the voltage and current at different 
frequencies, calculating their ratio for each frequency.  The graph shows the results.  

The ratio of voltage to current, which was indifferent to frequency when the wire was 
straight, is directly proportional to the frequency when the same wire is wound into a 
coil.  How are we to interpret this behavior?  To begin with, can we be sure that the ratio 
of voltage to current still means the same thing as it did before—the measure of 
resistance?  Or does it now reveal a new property, one that emerges when a conductor is 
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coiled up, especially about iron?—a property that reveals itself to changing current 
while being, apparently, invisible to steady current. 

It will not have escaped you that coiling a wire, especially coiling it about iron, is 
precisely how we go about making an electromagnet.  So we have good reason to 
suspect that this new property—if indeed it is new—is intimately connected with the 
magnetic field.  I don’t think we are yet in a position to speculate further about this 
property, still less to propose a name for it; but perhaps more guidance will emerge at a 
later stage of our investigation. 

 
Let us next consider what happens when we cut a conductor instead of coiling it.  In 

contrast to coiling, which we might have expected to make no difference, the action of 
cutting would seem to make all the difference.  For when a conductor is cut, we regard it 
as no conductor at all, since no current can then flow.  But this view reflects only the 
limited standpoint of steady current; for if you were to flatten out the exposed faces of 
the cut wire, making them larger and larger—again, a mere change of shape—you would 

form a set of parallel conductive surfaces—a capacitor.  Thus every severed wire is, in 
effect, a capacitor.  And while it may be true that a capacitor cannot sustain steady 
current, there is certainly a transitory current while it charges, and again when it 
discharges.  Let me demonstrate this. 

This device is a capacitor, one so highly miniaturized as to 
contain many square inches of parallel conductive surfaces, 
spaced microscopically close together.  And let me pause here 
to marvel at the remarkable degree of miniaturization that is 
achievable today.  When I was in high school, a capacitor 
having the same electrical value as this one—one Farad—
would have been nearly the size of my bedroom! 

When I charge the capacitor with a battery, the flashlight bulb shows that current 
flows temporarily, diminishing as the capacitor gains charge and finally ceasing 
altogether.  And when I then discharge the capacitor, the current again starts out at a 
maximum, and diminishes as the capacitor loses charge.  So you see that a capacitor 

can indeed sustain an electric current by repeatedly charging and discharging.  Since 
this is exactly what must happen if it is subjected to an alternating voltage, a 
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capacitor—even though it is essentially a broken wire—ought nevertheless to pass 
alternating current.   

I wish I could mold our copper wire into a capacitor of 
practical size, the way I earlier wound that wire into a 
usable inductor; but since that isn’t possible, I’ll use a 
commercially-manufactured unit like this one.  Let us then 
survey a range of frequencies with this capacitor, just as we 
did for the inductor.  Again we measure both the alternating 
voltage applied to the capacitor and the alternating current 
that flows through it.   

Here are the meter readings at six different frequencies ...  

and this time, instead of graphing the ratio of voltage to current, I will graph the ratio of 
current to voltage—you’ll see why in a moment...  

We get a straight line—the ratio of current to voltage is proportional to the frequency.  
Therefore the ratio of voltage to current must be inversely proportional to the 
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frequency.  Thus the ratio of voltage to current—a ratio which was independent of 
frequency for resistance, but directly proportional to frequency in the inductor, is 
inversely proportional to frequency in the capacitor. 

Does this behavior announce still another potentially new property?  If so, it is a 
property that emerges when we create a gap in the conductor.  But we know what 
happens when we apply a voltage across a gap—we create an electric field.  So perhaps 
we have reason to suspect that if this is indeed a new property, it is bound up with the 
electric field.  

 
{III} 

Our question is whether the inductor and capacitor displayed new electrical 
properties, or just the same old property of resistance, which for some reason varied 
with frequency in opposite ways.  We saw earlier that the distinctive proportionality 
expressed by Ohm’s Law was rooted in the conversion of electrical energy into heat.  
That is the deeper meaning of resistance: resistance is not just a synonym for “imperfect 
conducting power”; it denotes the specific property of a conductor that converts 
electrical energy to heat.  The greater the resistance, the more rapidly must energy be 
expended in order to maintain a given current—and therefore the more rapidly will 
heat be produced.   

If then a current flows through a number of resistors, the heat produced by all of 
them together must be the sum of the individual quantities of heat produced in each; 
and therefore too the total energy expended must likewise be the sum of the energies 
expended in each.  And hence the voltage across all of them connected end-to-end will 
be the sum of the voltages across each of them separately.  Let me demonstrate this. 

Here are three resistors, connected end-to-end across the generator terminals.  As 
the photograph shows, I have a voltmeter connected across each resistor as well as a 
fourth voltmeter across the combination.   
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When we energize the combination, the voltage across all three together does indeed 
equal the sum of the three voltages separately—you see that 1.1 volts plus 2.1 volts plus 

1.65 volts (the meters on the left) total 4.85 volts (the meter on the right), just as we 
had anticipated.   

We see, then, what happens when resistors are connected together.  Let us now see 
whether a resistor, an inductor, and a capacitor in combination behave the same way.   

Here is the same setup as before, only I have now replaced the left-hand resistor with 
an inductor, and the right-hand resistor with a capacitor.  But the three meters on the 

left register 2.2 volts, 1.3 volts, and 4.3 volts, respectively—while the meter on the right 
reads only 2.8 volts.  The voltage across all together does not equal the sum of the three 
voltages separately!  How is that possible—how can the whole not equal the sum of the 
parts?  And yet it was equal to the sum of its parts for resistors—that is, for components 
that had shown themselves indifferent to a current’s relation to time.  Put another way, 
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the logic of electrical conduction presented no surprises so long as time was irrelevant, 
but it seems to descend into absurdity when time becomes fundamentally involved.  

{IV} 
Earlier we set out to measure alternating current; and at first that endeavor seemed 

no more than a technical challenge, which the rectifying diode enabled us to overcome.  
But perhaps we are now beginning to suspect that our need for a measuring device is 
merely the utilitarian aspect of something far more fundamental: what we really need is 
a language.  For direct current, a language of magnitude sufficed: how much voltage and 
how much current pretty much summarized all that there was to say.  But now with 
alternating current, these quantities are time-related in a distinctive way that their 
direct-current counterparts were not.  Hence, as our attempt to measure AC voltage just 
revealed, a language of simple magnitude is inadequate to the task—so seriously 
inadequate, in fact, that it actually generated an antinomy! 

Does this perhaps bring to mind an earlier enigma—one we experienced when we 
first tried to understand the pendulum?  There too we encountered a phenomenon 
whose very essence was cyclical motion, but for which Galileo’s languages of constant 
speed and constant acceleration—both of them languages of simple magnitude—were 
likewise insufficient.  A new language was needed for the pendulum, and we discovered 
that language in the paradigm circle.  

The circle has radius A.  As it rotates, the vertical distance s ranges between positive 
and negative peaks according to the equation  𝑠𝑠 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑡𝑡;  and in the first semester 
Junior Laboratory we confirm experimentally that these changing values of s correspond 
to the changing displacements of the pendulum as it swings from side to side about its 
central position.  We then deduce the pendulum’s velocity and acceleration; and so 
construct the threefold paradigm circle, which articulates all three of those quantities.  

We may think of the paradigm circle as generating a sinuous pattern for each of them, as 
shown on the right in this slide.  In this triple graph, time occupies the horizontal axis, 
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while the other three quantities reside on the vertical axis; but the graph represents all 
four by distances—and thereby treats all four of them as magnitudes of the same kind—
just as Galileo treated time and distance geometrically, and thus as magnitudes of the 
same kind.  That is what I meant by a “language of simple magnitude.”  But note that the 
paradigm circle itself, unlike the graph which grows out of it, expresses time as an angle 
of rotation; and angle is not a “magnitude” in the sense of Euclid Book V—that is, 
capable of bearing ratio to another magnitude.  As Euclid expresses it in Definition 4,  

Magnitudes are said to have a ratio to one another [if they] can be multiplied 
so as to exceed one another. 

But angles, when multiplied, do not “exceed” one another—they rather return upon 
themselves!  Five right angles does not “exceed” one right angle; it is geometrically the 
same as one right angle.  Such is the native language of the paradigm circle; and that is 
why I wish to distinguish it from a “language of simple magnitude.” 

Returning, then, to the paradigm circle, we understand that it articulates a species of 
motion, independent of any particular device.  That motion has been saddled with a 
variety of technical names, but let us simply call it “swinging motion.”  Now, what reason 
is there for thinking that the paradigm circle might prove illuminating for alternating 
current?  Besides the obvious similarity between the periodicity of the paradigm circle 
and the cyclical character of alternating current, the mechanical AC generator 
practically incorporates a paradigm circle in its very construction.   

For look at the way in which each leg of Faraday’s rotating loop generates a current.  
We are viewing the loop along its axis of rotation; and when it rotates at constant speed, 

the number of lines cut per second depends on the loop’s position.  When the loop is 
turning through a small angle about the vertical (position B), each leg cuts a maximal 
number of lines of force; but when it is turning through the horizontal (position A), the 
moving leg cuts practically no lines at all.  And in general, when the loop makes angle 𝜃𝜃 
with a line perpendicular to the lines of force, the number of lines cut per degree 
rotation will be proportional to DE, the perpendicular part of its motion across the lines 
of force.  But DE is proportional to the sine of angle DCE, that is, to 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃.  Thus the 
trigonometric function sine arises naturally in the context of electric generation, just as 
it appears naturally in the language of the paradigm circle. 

Now just as Galileo’s geometrical examination provides a basis for the equations 
𝑠𝑠 = 𝑣𝑣𝑡𝑡  for uniform motion and  𝑠𝑠 = 1

2
𝑎𝑎𝑡𝑡2  for naturally accelerated motion, the geometry 

of the threefold paradigm circle provides the equations of swinging motion.  They are:  



17 
 

for displacement,      𝑠𝑠 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑡𝑡,  
which we saw already; 

for velocity:                𝑣𝑣 = 𝜔𝜔𝐴𝐴𝑐𝑐𝑐𝑐𝑠𝑠 𝜔𝜔𝑡𝑡 
and for acceleration:    

                                     𝑎𝑎 = −𝜔𝜔2𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑡𝑡. 
In these equations, A is the maximum extent of the 
swing, its peak value, typically called the amplitude 
of the swing; and ω is the speed of rotation of the 
threefold circle.  Similarly, ωA is the peak value, or 
amplitude, of the velocity; and ω 2A is the peak 
value, or amplitude, of the acceleration.  Juniors 
obtain these equations from the paradigm circle in the first semester Laboratory; but if 
you’d like a brief résumé, that is also in the handout.  The only factor we need worry 
about at this point is ω, the speed of rotation of the circle.  In principle, we can express 
this quantity in any units we please—revolutions per minute, degrees per second, 
quadrants per fortnight, whatever we like—but our choice of units affects the forms of 
the equations.  The equations I’ve given here assume that ω is measured in radians per 
second; and since there are 2π radians in a circle, ω will be 2π times the number of 
revolutions per second—that is, 2π times the frequency, or 2π f.    

Any mass mounted on a spring will exhibit swinging motion, as does this steel washer 
affixed to the end of a hacksaw blade.  

How do the equations of swinging motion apply to this device?  Let us first attend to 
the inertial element, the mass.  It must exemplify Newton’s Second Law; so when we 
substitute the acceleration equation 

𝑎𝑎 = −𝜔𝜔2𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑡𝑡 
(from the blue radius), into the Second Law we have 

𝐹𝐹 = 𝑚𝑚𝑎𝑎 = −𝑚𝑚𝜔𝜔2𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝑡𝑡, 
while the velocity equation (from the red radius) was 

𝑣𝑣 = 𝜔𝜔𝐴𝐴𝑐𝑐𝑐𝑐𝑠𝑠 𝜔𝜔𝑡𝑡. 
The paradigm circle shows us that the blue radius 

precedes the red radius by 90 degrees of rotation—so 
that, likewise, the force precedes the velocity.  So now 
we know, for an inertial body, how force and velocity 
are related in time.  How do they relate in magnitude?  
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To see this, find the ratio of their respective amplitudes, that is, of their peak values 
independent of sign.  We have 

the amplitude of force over the amplitude of velocity =
𝑚𝑚𝜔𝜔2𝐴𝐴
𝜔𝜔𝐴𝐴

= 𝜔𝜔𝑚𝑚 = 2𝜋𝜋𝜋𝜋𝑚𝑚 . 
It is proportional to the frequency, f.  But recall that when we measured the ratio of 

alternating voltage to current for the inductor, 𝑉𝑉/𝐼𝐼, it too was proportional to frequency.  
We seem to have come upon an intriguing analogy between an electrical inductor and a 
mechanical mass.  In particular, the ratio between the measured voltage and current in 
the inductor appears to have the same mathematical form as that between the 
amplitudes of force and velocity for a mechanical mass.  If we write them explicitly in 
that same form we shall have: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑣𝑣𝑓𝑓𝑣𝑣𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣

= 2𝜋𝜋𝜋𝜋𝑚𝑚  (for the mass) 
and 

𝑉𝑉
𝐼𝐼

= 2𝜋𝜋𝜋𝜋𝜋𝜋  (for the inductor) 

where L represents some characteristic of the inductor that is analogous to mechanical 
mass m.  How seriously should we take this analogy?  

Analogies present a particularly difficult problem for science.  On the one hand, they 
can suggest hitherto undiscovered correspondences, as (perhaps) in this case.  On the 
other hand, to the extent that science seeks to lay bare the actualities underlying the 
phenomena it studies, it cannot rest with mere similarities.  Closely related to analogy is 
metaphor—which creates an even worse problem, by stating (either explicitly or 
implicitly) that one thing is another thing—while all the while knowing that it is not.  If 
we say, with Hobbes, “Man is a wolf,”5 we are invoking the wolf as the emblem of a truth 
about man; but if we really thought that man was a wolf, simply, the statement would be 
an empty tautology.  Rightly understood, the metaphor requires us to live in two worlds 
at once—one in which man is, and another is which man is not, a wolf.  Nothing, it seems, 
could more spectacularly fall short of the Cartesian ideal of clarity and distinctness than 
does metaphor. 

Thus it may occasion considerable wonderment that Maxwell not only took the 
electro-mechanical analogy very seriously, but even introduced a metaphorical 
terminology to express it.  He branded L as a new electrical property, which he named 
“electrical inertia.”  Thus did Maxwell answer our earlier question: our measurements 
with the inductor did not simply reveal a resistance that varied with frequency but a 
wholly different electrodynamic property.  

Later investigators disdained what they judged to be capricious metaphor on 
Maxwell’s part, and so replaced his colorful title “electrical inertia” with the soberer 
term “inductance.”  But—and I will say more about this later—I don’t believe Maxwell 
employed metaphor in the way they thought he did.  

 

 
5 Shortened from the Latin “Homo homini lupus,” cited by Hobbes in his preface to De Cive (“On the Citizen”).  It is 
a favorite example of Colin S. Turbayne in his book, The Myth of Metaphor (1962). 
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But we have almost lost sight of our mechanical vibrator!  Let us return to it, and this 
time consider the elastic element, the spring.  It is characterized by Hooke’s Law; so 
substituting the distance equation,  𝑠𝑠 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑡𝑡,  into 
that law we have 

𝐹𝐹 = 𝑘𝑘𝑠𝑠 = 𝑘𝑘𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑡𝑡 
while the velocity equation is, again, 

𝑣𝑣 = 𝜔𝜔𝐴𝐴 𝑐𝑐𝑐𝑐𝑠𝑠𝜔𝜔𝑡𝑡 . 
The paradigm circle reveals that the red radius 

precedes the black radius by 90 degrees of rotation—
so that, in this case, the velocity precedes the force.  
Such is the time-relation of force and velocity for 
elasticity and, interestingly, it is the reverse of that for 
inertia.  And if we now examine the ratio of their 
amplitudes we find that 

the amplitude of the force over the amplitude of velocity =
𝑘𝑘𝐴𝐴
𝜔𝜔𝐴𝐴

=
𝑘𝑘
𝜔𝜔

=
𝑘𝑘

2𝜋𝜋𝜋𝜋
 . 

It is inversely proportional to the frequency—just like the ratio of alternating voltage 
to current for the capacitor.  This argues a striking analogy between the electrical 
properties of a capacitor and the mechanical elasticity of a spring; and once again 
Maxwell will take the analogy seriously.  Expressing the mechanical and the electrical 
ratios in the same mathematical form yields: 

force
velocity

=
𝑘𝑘

2𝜋𝜋𝜋𝜋
 (for the spring)             and               

𝑉𝑉
𝐼𝐼

=
1 𝐶𝐶⁄
2𝜋𝜋𝜋𝜋

  (for the capacitor), 

where 1/C represents some property of a capacitor that corresponds to k, the coefficient 
of elasticity of a spring.  Maxwell had his own reasons for expressing the constant C in 
reciprocal form, but he identified C as another new electrical property, altogether 
different from resistance, and whose inverse he styled “electrical elasticity.”  The 
modern term for this property, here too fleeing in horror from dreaded metaphorical 
whimsey, is capacitance.6   

Now if we have drawn sound parallels between inertia and inductance, on the one 
hand, and between elasticity and (inverse) capacitance, on the other, then we must not 
hesitate to represent the electrical quantities by the same paradigm circles as we did the 
mechanical quantities.  The inductor’s paradigm circle, then, will incorporate the blue 
and red radii—which will now represent voltage and current, respectively.  And notice 

 
6 The terms “inductance” and “capacitance,” like so many other modern electrical names, were originated by Oliver 
Heaviside. 
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that voltage precedes current in the inductor; and therefore—since they do not rise and 
fall together—they cannot be proportional!  Ohm’s Law cannot hold for the inductor—at 
least, not on the instantaneous level.  

Next, for the capacitor; its paradigm circle will embrace the black and red radii, 
which will represent voltage and current for the capacitor.  Here, current precedes 

voltage, so again they cannot be proportional; and thus for the capacitor, too, Ohm’s Law 
cannot hold on the instantaneous level.  

When our circuit contained only resistors, Ohm’s Law held for both DC and AC; and 
the individual voltages added up just as we expected them to do.  But when an inductor 
and a capacitor were involved we came upon the seeming absurdity that the whole 
voltage was less than the sum of its parts.  That perplexing development threatened to 
call our entire understanding of alternating current into question.  But now that the 
paradigm circle has given us a language for measurement we did not then possess, we 
can comprehend why AC voltages add up for resistance but not for inductance and 
capacitance.  The clue lies in our earlier observation that the ratio between AC voltage 
and current for a resistance did not depend on frequency, in contrast to those ratios for 
inductance and capacitance, which did.  The frequency dependence we saw with 
inductance and capacitance arose because their voltage and current were not 
synchronized—one of them inevitably led or lagged the other.  Then for resistance, 
where the ratio does not depend on frequency, we may infer that voltage and current 
are synchronized.7  In the paradigm circle for resistance, then, the radii representing 

voltage and current will coincide.  But voltage and current are synchronous only for the 
property called resistance; and we can now distinguish rigorously between that 
property and the properties of inductance and capacitance, which belong not to 

 
7 The mechanical analog to resistance would therefore appear to be a force that is proportional to velocity—such 
as the viscous force (whose action, by the way, also generates heat). 
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conductors as such but to the magnetic and electric fields that accompany the currents 
they carry.  Evidently those properties were always present, and indeed must exist to 
some degree in every electrical circuit; but we never noticed them until alternating 
current made them manifest. 

Let us now resolve the seeming paradox 
in our earlier circuit containing inductance, 
capacitance, and resistance in combination.  
Since the three components are connected 
end-to-end, the same current i must pass 
through each one at every instant;8 so when 
we draw the paradigm circles for each of 
them, the radii representing their currents 
will all be identical in length and angle.  We can then superimpose the circles upon one 
another with their current radii lined up, to obtain a composite paradigm, shown on the 
left in this slide. 

Each of the radii represents the peak voltage of one component: the black radius that 
of the capacitor, the red that of the resistor, and the blue that of the inductor.  Our initial 
expectation was that all three would add together arithmetically, to form the total.  But 
the paradigm circle shows us that the arithmétic sum of the peaks is irrelevant, because 
the voltages do not attain their peaks at the same time.  Instead, we must take their 
vector sum.  First, compound two of the voltages together to obtain their resultant as 
shown in the middle diagram; then compound this last with the remaining voltage as in 
the right-hand diagram; the resultant, in green, is the actual total—and, as we see, it is 
considerably less than what we originally expected to measure, and now we know why.  
Do you think we could have gained this understanding had we not been blessed with the 
special language of the paradigm circle?  

 

I mentioned earlier that Maxwell’s names for the new electrical quantities introduced 
a metaphorical terminology that later generations quickly disavowed.  But Maxwell did 
not fashion those metaphors in the usual way, which typically subordinates one term to 

 
8 As Maxwell states in the Treatise, sect. 61, electricity does not accumulate. 
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another.  For example, when in Act III, Shakespeare’s Romeo refers to the stars as 
“night’s candles,”9 he is looking to everyday artifacts in order to characterize the 
heavenly luminaries.  Rhetorically, Romeo is subordinating the celestial order to human 
craft.  Thus when Maxwell called the distinctive property of the inductor “electrical 
inertia,” readers who thought of “inertia” as a strictly mechanical term might well have 
assumed that Maxwell meant, similarly, to subordinate electrical understanding to 
mechanical understanding.  Perhaps that was the reason for their intense aversion: lest 
electrical science seem to be constrained by mechanical precepts.   

But Maxwell makes clear in the Treatise10 that he places “mechanical inertia” and 
“electrical inertia” on an equal footing—both of them only reflections of a still more 
generalized “inertia,” neither mechanical nor electrical in nature—and pointing to an 
even more universal physics which, he thought, ought to encompass both 
electrodynamics and mechanics as special cases.  From that point of view, metaphor is 
to be embraced, not disdained—for when we are working at the boundaries of 
established thought we have no choice but to think metaphorically, and thereby to think 
in two worlds at once.  Dialectic, not subordination, is the heart of Maxwellian 
metaphor. 

The paradigm circle declines to treat time as a Euclidean magnitude, and thereby 
combines rest and motion in a single image.  In Platonic terms, that would constitute a 
kind of mediation between the world of the unchanging Forms and the phenomenal 
world.  Poetically, it constitutes metaphor, because, like Maxwell’s, it too stands in two 
worlds at once.   

Plato’s eidos is the avowed aim of philosophical thought, not of routine thought.  But 
perhaps all thought would be philosophical if it were not so easily deflected from its 
higher aim; and Socrates is quick to admonish us against such casual deflection.  
Although in the Republic Socrates concentrates much of his criticism on the power of art 
and poetry to distract from the philosophical pursuit,11 a youthful disillusionment, 
recounted in the Phaedo, 12 taught him also that an intense interest in nature—in how 
things work—can perhaps be as much a distraction from the philosophic goal as is an 
uncritical love of poetry.   

It is easy to take these strictures against art, poetry, and natural science as 
constituting fixed Platonic dogma.  But doing so requires that we ignore some very 
powerful Socratic imagery, both in the Republic’s Cave and in Diotima’s discourse in the 
Symposium.  The predominating imagery in both, I find, turns more on aspiration than 
rejection: once we have seen fire, it seems we are bound to seek the Sun.   

To the extent we seek true understanding, we really do dwell in two worlds at once.  
By means of myths, with their intrinsic metaphors, we manage to do so without losing 
our sanity.  And Socrates, the master of myth and metaphor, knows that better than 
anyone.   

 
  

 
9 Romeo and Juliet, III.5 
10 Part IV, Chapter V 
11 Republic Book X, 607b 
12 Phaedo 96a–100d 
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Handout for lecture on Alternating Current 

I. THE PARADIGM CIRCLE AND THE EQUATIONS OF SWINGING MOTION 
Consider a circle with center O and radius OB, and from point B drop the perpendicular BP, so 

that BP = OB sin∠AOB.  If the circle rotates at the rate ω, then ∠AOB = 𝜔𝜔𝑡𝑡; and we can write  
BP = OB sin𝜔𝜔𝑡𝑡 

or, letting  𝑠𝑠 = BP and 𝐴𝐴 = OB, 
𝑠𝑠 = 𝐴𝐴 sin𝜔𝜔𝑡𝑡 . 

This is the first equation of swinging motion.  As the circle rotates, s repeatedly ranges between 
equal peaks A in opposite directions, each peak being equal to the radius OB.  A is customarily 
called the amplitude of the swing. 

The rotational speed ω may be expressed in any angular measure—degrees per second, 
rotations per minute, or whatever.  But it is advantageous to choose radians per second,13 since 
doing so will simplify a number of subsequent expressions.  Then if BC is the velocity at the 
circle’s circumference,  

BC = 𝜔𝜔 ∙ OB .13F

14 

Now construct a new circle with radius OD equal to BC, and let it rotate along with the first 
circle.  Then just as the vertical component of radius OB generated a record of the swing’s 
displacement from the center, so too the vertical 
component of OD generates a record of the swing’s 
ever-changing velocity v.  We have 

𝑣𝑣 = OD sin∠AOD 
or, by similar triangles, 

𝑣𝑣 = OD cos𝜔𝜔𝑡𝑡 . 
But  OD = BC = 𝜔𝜔 ∙ OB = 𝜔𝜔𝐴𝐴, so 

𝑣𝑣 = 𝜔𝜔𝐴𝐴 cos𝜔𝜔𝑡𝑡, 
the second equation of swinging motion. 

Similarly, let DE be the velocity at the 
circumference of the circle through D; then 

 
13 The radian is that angle which, when at the center of a circle, subtends an arc on the circumference equal to the 
circle’s radius.  Since the circumference 2π times the radius, there are, necessarily, 2π radians in a circle.   
14 If angle θ  is expressed in radians, it will subtend an arc AB�  such that AB�  : 2𝜋𝜋𝜋𝜋 :: 𝜃𝜃 ∶ 2𝜋𝜋, from which AB� = 𝜋𝜋𝜃𝜃.  
Then if the angle increases at the rate ω, the arc similarly increases at the rate 𝑣𝑣 = 𝜋𝜋𝜔𝜔.  Thus, circumferential 
velocity is simply the product of the radius and the rate of rotation. 
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DE = 𝜔𝜔 ∙ OD . 

If we go on to construct a third circle having radius OF equal to DE, what will that circle 
represent?  The first circle specified position, while the second circle specified velocity—the rate 
of change of position.  Then the third circle, which was constructed in precisely the same way, 
must represent acceleration, the rate of change of velocity.  The vertical component of OF 
therefore generates a record of the swing’s acceleration, so that 

𝑎𝑎 = −OF sin𝜔𝜔𝑡𝑡 . 
But  OF = DE = 𝜔𝜔 ∙ OD,  while  OD = BC = 𝜔𝜔 ∙ OB = 𝜔𝜔𝐴𝐴.  Substituting, 

𝑎𝑎 = −𝜔𝜔2𝐴𝐴 sin𝜔𝜔𝑡𝑡 . 
This is the third equation of swinging motion.  Notice the negative sign; it is clear from the 
diagram that a and s must have opposite signs. 

The threefold paradigm circle generates a combined record of the position, velocity, and 
acceleration of swinging motion, like this: 

 
 
 
II. AVERAGE CURRENT PASSED BY A RECTIFYING DIODE 

One cycle of alternating current having peak value Ip may be represented as 
𝐼𝐼𝑝𝑝 sin𝜔𝜔𝑡𝑡 

as 𝑡𝑡 increases from 0 to the time of a full cycle, which is 2𝜋𝜋 𝜔𝜔⁄ .  But since the rectifying diode 
blocks half of each cycle, current will pass only while 𝑡𝑡 increases from 0 to 𝜋𝜋 𝜔𝜔⁄ .  The quantity of 
electricity passed during this time will therefore be  

𝑄𝑄 = � 𝐼𝐼𝑝𝑝 sin𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡
𝜋𝜋 𝜔𝜔⁄

0
= −

𝐼𝐼𝑝𝑝
𝜔𝜔

cos𝜔𝜔𝑡𝑡�
0

𝜋𝜋 𝜔𝜔⁄

=
2𝐼𝐼𝑝𝑝
𝜔𝜔

 

so that the average current will be this quantity divided by the time of a full cycle, or 

𝐼𝐼𝑎𝑎𝑣𝑣 =
2𝐼𝐼𝑝𝑝 𝜔𝜔⁄
2𝜋𝜋 𝜔𝜔⁄

=
𝐼𝐼𝑝𝑝
𝜋𝜋

 . 

Thus a DC meter equipped with a diode rectifier and connected to a source of alternating 
current will read 1 𝜋𝜋⁄  or .318 times the peak value of that current.  Commercial AC meters, 
however, are calibrated differently; in order to secure consistency between AC and DC 
calculations of power they do not read the average current but about 2.22 times the average.  
But since their readings are still proportional to the average values, my use of commercial 
meters does not affect any of the reasoning in the lecture.   

H. Fisher 


