LOGICAL ECONOMY IN EINSTEIN'S "ON THE
ELECTRODYNAMICS
OF MOVING BODIES"

BY ROBERT B.
WILLIAMSON

APRIL 1975
THE COlleGIAN PRESS
ST. JOHN'S COLLEGE
ANNAPOLIS, MD 21404

LOGICAL ECONOMY IN EINSTEIN'S "ON THE ELECTRODYNAMICS OF MOVING BODIES"

Robert B. Williamson

$$
\begin{aligned}
& \text { And where I dime is come round, } \\
& \text { and there shall I end. }
\end{aligned}
$$

In section 2 of his 1905 paper $(1)_{\text {Einstein }}$ shows that the synchronized clocks of the "stationary" system $K$ can be coordinated with the clocks of the moving system $k$ only at the cost of violating the criterion of simultaneity in ki. Thus, if the clocks in $k$ are to be synchronized (as well as those in $\mathbb{K}$ ), we must abandon the attempt to coordinate the two systems according to the classical formula $\tau=t$. The task of section 3 is the derivation of new transformation equations which will allow observers:in: $K$ to:coordinate the measarements (temporal and spatial) of observers in $k$ with-their own. Something more than midway in the argument the equations take the form

$$
\tau=\varphi(v) \beta(v)\left(t-v x / c^{2}\right),
$$

$\xi=\varphi(v) \beta(v)(x-v t)$,
$\eta=\varphi(v) y$,
$\zeta=\varphi(v) z$,
where $\quad B(v)=1 /\left(1-v^{2} / c^{2}\right)^{\frac{1}{2}}$. (2)
Hereafter I shall refer to the conjunction of the above equations as $T$

1. All page references are/the English translation in Einstein et al., The 1. All page references are/the English translation in Einstein et al., The
Principle of Relativity (Dover) and, when in brackets, to Das RelativitätsPrinciple of Relativity (Dover) and
prinzip, ed. Blumenthal (Teubner).
2. I shall use $\beta(\nabla)$ instead of Einstein's $\beta$ in order to stress the dependence of $\beta$ on the values of $v$ and $c$ (the velocities $6 f k$ and of light) as measured in $K$.

The next stage in the derivation is the evaluation $\varphi(v)$, which will conveniently assume the value 1 and thereby absent itself from $T$. Enstein, however, does not press on directly to that mark. Instead, he says,

We have now to prove that any ray of ilght, measured in the moving system, is propagated with the velocity $c$, if, as we have assumed, this is the case in the stationary sysprinciple of the constancy of the velocity of 11 ht is compatible with the principle of relativity. (p. 46. [33])

His proof then takes the form of showing that if $x^{2}+y^{2}+z^{2}=c^{2} t^{2}$ ("as we have assumed"), we shall arrive, by application of equations $T$, at the result $\xi^{2}+n^{2}+\zeta^{2}=c^{2} \tau^{2}$ 。(3)

The proof is puzzling on two counts. First, why does Einstein place it where he does, interrupting his otherwise single-minded thrust toward the final statement of equations $T$ with $\varphi(v)=1$ ? But, more importantly, does not Einstein here profess to prove a proposition $\left(\xi^{2}+n^{2}+\zeta^{2}=c^{2} \tau^{2}\right)$ from
3. One 1s intially tempted to reverse the order of the proof since equations T may be directly applied to $\xi^{2}+n^{2}+5^{2}=c^{2} \tau^{2}$ to yield $x^{2}+y^{2}+z^{2}=c^{2} t^{2}$. For reasons which will soon be manifest, the longer haul of the 1905 paper is requisite. Solving for $x, y, z$ and $t$, we have

$$
\begin{aligned}
& \text { (a) } \quad t=[\tau / \varphi(v) B(v)]+v x / c^{2}, \\
& \text { (b) } \quad x=[\xi / \varphi(v) B(v)]+v t, \\
& \text { (c) } \quad y=\eta / \varphi(v), \\
& \text { (d) } \quad z=\zeta / \varphi(v) .
\end{aligned}
$$

Solving (a) and (b) simultaneously, we have
$\left(a^{\prime}\right) \quad t=\left[\tau \beta(v)+\left(v \xi / c^{2}\right) B(v)\right] / \varphi(v)$
$\left(b^{\prime}\right) \quad x=[\xi \beta(v)+v \tau \beta(v)] / \Phi(v)$.
The functions $l^{\prime}(v)$ and $\varphi(v)$ continue to refer only to measurements made ${ }^{2}$ in $\mathbb{K}$; however, when ( $a^{\prime}$ ), ( $b^{\prime}$ ), (c) and (d) are applied to $x^{2}+y^{2}+z^{2}=c^{2} \mathbb{t}^{2}$, $\beta(v)$ and $\rho(v)$ cancel out, leaving the equation free of all coordineter in R .
premises $T$ which themselves were derived from that very proposition? For, after deriving a provisional equation for $\tau$ ( $p .45$, line 3 [32, Iine 24]), he determines the quantities $\xi, n$ and $\zeta$ on the basis of the assumption that "light...is also propagated with velocity $c$ when measured in the moving systen, "1.e. that $\xi^{2}+\eta^{2}+\zeta_{0}^{2}=c^{2} \tau^{2}$ (or, as Einstein employs,it, that $\xi$. $c r$, $\eta=c t$ and $\zeta=c t$ for rays propagated along the $\xi, \eta$ and $\zeta$ axes respectivelyp. 45, lines $8-12,14,23$ [p. 23, 1ines $28-31,33$, and p. 33, line 8]).

The latter difficulty can be schematized as follows. Let $k$ represent the equation $x^{2}+y^{2}+z^{2}=c^{2} \tau^{2}$ and $\underline{k}$ represent the equation $\xi^{2}+n^{2}+\zeta^{2}=c^{2} \tau^{2}$. Also, let 8 stand for other propositions which shall hereafter be identified. Then we seem to have the following pair of arguments:

$$
\begin{aligned}
& \underline{K} \& \underline{k} \& S \rightarrow T \\
& T \& \mathbb{K} \Longrightarrow \underline{k}
\end{aligned} \quad \begin{aligned}
& (p p .44-46, \text { 1ine } 6 \text { [p. 31, 1ine 37-p. } \\
& \text { 1ine 15]) } \\
& (p .46, \text { 1ines 11-29 [p. 33, 1ine 20-p. } \\
& \text { 1ine 3]). }
\end{aligned}
$$

In short, the argument is circular: $\underline{k}$ is proved by means of $T$, which itself is proved by means of k . Not all circles, however, are vicious. To show that the circle which Einstein's argument defines is a noble one, I must turn to the more fundamental considerations of section 2 .

## PART I: A MATTER OF PRINCIPLE

## 1. On the Two Principles

At the beginning of section 2 Einstein sets forth the two principles upon which his subsequent reflections are based and which I shall henceforth refer to as $P_{1}$ and $P_{2}$ :
$P_{1}$ : The laws by which the states of physical systems undergo change are not affected, whether these changes of state be referred to the one or the other of two systems of co-ordinates in uniform translatory motion.
$\mathbb{P}_{2}$ : Any ray of light moves in the "stationary" system of co-ordinates with the determined velocity $c$, whether the ray be emitted by atationaty or a moving body. Hence

$$
\text { velocity }=\frac{\text { 1ight path }}{\text { time interval }}
$$

where time interval is to be takin in the sense of the definition in $\oint 1$.

By calling them principles (Prinzipien, $\dot{\alpha} p x a \dot{\circ}$ ), Einstein indicates that $P_{1}$ and $P_{2}$ supply radical beginnings which will rule over our subsequent thinking. That is to say, neither can be derived from the other (for in that case the derived proposition would not be a principle), nor can either be omitted if the subsequent propositions are to follow.

We note two pecularities in the phrasing of $\mathrm{P}_{2}$. Why does Einstein surround the word "stationary" with quotation marks (see also p. 43, line 7 [p. 31, line 7]), whereas he never refers similarly to a "moving" system? Further, why does he refer to "the" stationary system (im "ruhenden" Koordinatensystem)? Ought he not to have phrased $P_{2}$ so as to extend to "any" or "all" inertial systems? (5)
5. As does, for example, Max Born in his rephrasing of $P_{2}$ in Einsteinss theory of Relativity, p. 232 (Dover): "In all inertial systems the clocks of the same kind." Simitarly: $>$. W. Bridgman th tods and Primer of Relativity, pa 113f. (Wesleyan 1962) and Hans Reichenbach s Primer of Relativity, p..113f. (Wesleyan, 1962) and Hans Reichenbach space and rime, 204f. (Dover, 1958). Both ceased to appear as flaws had the authors preated them as occasions to re-examine the second principle, $\mathrm{P}_{2}$.

Let us toy with the suspicion that Einstein meant us to take his words literally and see where that suspicion leads us. ${ }^{(6)}$ The word "the" (cp. "im") qould seem to restrict the claims of $P_{2}$ to a single inertial system. To what system? According to section 3, to $K$. But what is $K$ ? Cannot $K$ be any inertial system, whose occupants are at-Iiberty to regard their system as stationary? But will that assumption be fustified for all inertial systems? Not on the basis of $P_{2}$ alone, if "the" is understood literally. Indeed, $P_{2}$ would not be incompatible with a world in which there was one system alone in which light was propagated with velocity $c$ regardless of the motion of the source.
$P_{2}$, therefore, restricts its claim to the single reference system $K$. $P_{2}$ makes no claims about the behavior of light in other systems, wherein light might travel at velocities varying with the velocity of the emitting source or at some unvarying velocity $c$ ' with $c$ ' $\%$. $P_{2}$, therefore, makes no claims concerning either the existence or the non-existence of an absolute frame of reference. If such an absolute frame exists in the form, say, of a luminiferous aether, $P_{2}$ would assert that $K$ is at rest in the aether, in which all observers, regardless of their state of motion, would have grounds for referring to $K$ as the "stationary" system.

Lest the above reading of $P_{2}$ be thought to rest on an illegitimate overemphasis on a single word, $I$ add three considerations. First, if $\mathrm{P}_{2}$ is understood to apply immediately to all inertial systems, the proposition $\underline{k}$ will follow from $P_{2}$ alone. However, when Einstein first introduces $k$,
6. That men of divine intellect wrote with care seems to me as plausible as Ptolemy's assumption that the visible gods Hermes, Aphrodite, Ares, Zeus and Chronos do not wander randomly. In this essay I shall emulate the ptolemaic canon of interpretation: to save all the phenomena with the least possible number of epicycles.
he offers as justification the premises $P_{1}$ and $P_{2}$ taken "in combination" (p. 45, Ines 7-12 [p. 32, Iines 27-31]). That 1s, the extension of $P_{2}$ to syatems $k$ other than $K$ requires the additional support of $P_{1}$ and is not immediate.

Second, let us assume for a moment that $P_{2}$ does not limit itself to $K$. There is then at least one other inertial system $k$, in motion relative to $k$, for which $P_{2}$ professes to hold. In this case, $P_{2}$ can be analyzed into the two propositions
(a) Any ray of iight moves in $K$ with velocity $c$ whether the emitting source be in motion or rest in $K$,
and (b) Any ray of light moves in some system $k^{\prime}$, in uniform motion relative to K , with velocity c whether the emitting source be in motion or rest in $\mathrm{k}^{\prime}$.
But the conjunction of $P_{1}$ and (a) impliesi(b). (b) is therefore logically redundant and must away if $P_{2}$ is to be a principle properly so called.

Third, let us formulate a generalized version of $P_{2}$ as follows:
$P_{2}{ }^{\prime}$ Any ray of light moves in every inertial system of co-ordinates with the determined velocity $c$, whether the ray be emitted by a stationary or a moving body. Hence

$$
\text { velocity }=\frac{\text { light path }}{\text { time interval }}
$$

where time interval is to be taken in the sense of the definition in $\hat{y} 1$.

We designate the definition of time interval (to be examined presently) by D. $P_{2}^{\prime}$ implies $D$, since $D$ in imbedded in the very meaning of $P_{2}{ }^{\prime}$. Further, $P_{2}{ }^{\prime}$ provides a sufficient justification for $D$ (i.e. $t_{b}-t_{a}=t^{\prime} a-t_{b}$ ) for any ; inertial system-see p. 40 , line 12 [p. 28, line 33]. $D$ is therefore logically superfluous and section 1 might have been replaced by a deduction of $D$ in the course of section $2 \cdot(7)^{(7)}$ But $P_{2}$ ' perpetrates an even graver superfluity.
7. So, too, does $D$ follow from $P_{2}$, but only for $K$. More on this later.

For from $P_{2}$, alone $\left.{ }^{(8)} \mathrm{E}\right)$ nstein might have deduced the entire kinematical part of his paper. Thus, in the first part of the paper, $P_{1}$ would have been logically superfluous. This is not all, for the content of the second, electrodynamical part is deduced from the application of $T$ to, e.g., the Maxwell equation, which are themselves logically independent of $P_{1}$. To use Kantian terms, $P_{1}$ would serve no constitutive purpose whicn was not already adequately provided for by $P_{2}$ '; at best $P_{1}$ would perform a regulative office, recomending that Maxwell's equations be generalized under the aegis of $P_{2}$. But to recommend that the laws of physics be reformulated so as to be conformable to $P_{2}^{\prime}$ (and its consequent $T$ ) is nothing more (and a good deal less) than to assert $\mathrm{P}_{2}{ }^{\prime}$ : Thus, the assertion of $\mathrm{P}_{2}{ }^{\prime}$ carries with it the assertion that $P_{1}$ is logically superfluous in the entire 1905 paper.

We are forced to the conclusion that $P_{1}$ and $P_{2}$ can be principles only if $P_{2}$ is taken literally, as referring to a single "stationary" system $K$. $P_{2}$ is therefore logically neutral on the question of the luminiferous aether $P_{2}$ makes the claim that we can ignore the velocity of emitting sources in at least one inertial system K ; it makes no claim as to whether or not we can ignore the relative motions of observers in systems other than $K$. Thus, (hereafter, MME
$P_{2}$ and the Michelson-Morley experiment/are logically irrelevant to one another, for the latter offers no evidence regarding $K$, which would on their hypothesis be at rest in the aether: the significance of MME depends upon the assumption
8. More precisely, from $P_{2}$ ' and the axioms of Euclidean analytic geometry (E) We may now identify $S$ above with the conjunction $D \& E$
that the earth (to the second approximation) belongs to an inertial system $k(\neq K)$ concerning which $P_{2}$ is silent. But if MME is logically irrelevant to $P_{2}$, it is factually irrelevant to $P_{1}$, for the null result of MME at best supplies a nihil obstat for $P_{1}$. Thus, logical considerations lead to the same conclusion as does Gerald Holton's scholarly argument that the "crucial experiment" of Michelson and Mority was not so crucial after all. (9)

I conclude that $P_{2}$ makes a restricted claim, conceivably subject to emplrical support, and that $P_{1}$ expresses a constitutive, as well as regulative, ${ }^{(10)}$ requirement of pure reason.

## 2. The Circle Widens

Earlier, I sketched Einstein's circular argument as

$$
\begin{aligned}
& \underline{K} \& \underline{k} \& S \longrightarrow T \quad \text { (with } S=D \& E \& \text { note } 8 \text { above) } \\
& \text { and } T \& \underline{k} \longrightarrow
\end{aligned}
$$

Several observations are now in order.

First, $K$ is directly implied by $T$ (assuming the axioms of $E$ ), for $T$ contains the equation $\beta(v)=1 /\left(1-v^{2} / c^{2}\right)^{\frac{1}{2}}$; that is, $T$ contains an equation which asserts that $1 /\left(1-v^{2} / c^{2}\right)^{\frac{1}{2}}$ is a function of $v$ alone. In other words, c has a constant value (measured in K--cf. note 2) regardless of the velocity $v$ (also measured in $K$ ) of its source. (This should not surprise us, for $T$ was deduced from $\underline{K}$ and hence from $P_{2}$.) Thus, the second half of the circular
9. Thematic Origins of Scientific Thought, II, 9 (Harvard)
10. Einstein also refers to his two principles as Voraussetzungen, "presuppositions" ([p. 26, lines 28, 29, 32] cp. p. 38, lines 3, 4, 8). Although voraussetzung has the primary sense of a (constitutive) presupposition, its meaning may be extended to that of a goal set forth in advance so as to direct our activity. voraussetzung thus plays, in our thinking activity, a role analogous to Aristotle's té $\lambda 0 s$, which he identifies with the $\alpha$ oxn which is, i.e. which both constitutes the being of things and regulates their development.

## argument reduces to $T \rightarrow \underline{k}$. We are further justified in asserting $T \rightarrow \underline{K} \& \underline{k}$.

Second, $k$ is asserted to hold for any inertial system $k$. $k$ is therefore equivalent to the proposition that the law expressed in $\mathrm{P}_{2}$ as holding for the system $K$ may be extended to any system $k$ in uniform motion relative to $K$. But that extension is guaranteed by $P_{1}$. Let us analyze $P_{1}$ into two parts:
$P_{1} \quad$ If $\mathbb{P}_{2}$ is a law holding true for the system $K, P_{2}$ will hold true for any other inertial system $k$,
$P_{1}^{\prime \prime}$ Any law other than $P_{2}$ by. which the states of physical systems undergo change is not affected, whether these changes of state be referred to the one or the other of two systems of co-ordinates in uniform translatory motion. (11)
Now, it is precisely $P_{1}$ ' that allows the extension of $P_{2}$ (which is in itself restricted to $K$ ) to any inertial system $k$. Hence, $\underline{K} \& \underline{k} \Leftrightarrow P_{1}{ }^{\prime} \& P_{2}$. Therefore, $T \rightarrow P_{1}{ }^{\prime} \& P_{2}$.

Third, we turn to the first half of the circular argument: $\underline{K} \& k \& S \rightarrow T$. Since $\underline{K} \Leftrightarrow P_{2}$ and $P_{1}{ }^{\prime} \& P_{2} \rightarrow \underline{k}$, we may write $P_{1}{ }^{\prime} \& P_{2} \rightarrow \underline{K} \& \underline{k}$. Therefore, $P_{1}{ }^{\prime} \& P_{2} \& S \rightarrow \underline{K} \& \underline{k} \& S \rightarrow T$. Einstein's circular argument now expands into

$$
P_{1}{ }^{\prime} \& P_{2} \& S \longrightarrow T
$$

$$
\text { and } T \rightarrow P_{1}^{\prime} \& P_{2} .
$$

The question of circularity now appears--as Einstein's own words already inform us--to be a matter of principle.
11. The separation of $P_{1}$ into $P_{1}^{\prime}$ and $P_{1}{ }^{\prime \prime}$ seems artificial, but i see no reason to question its valiaity. It is essential that $P_{1}^{\prime}$ take a hypothetical form, and that $P_{1}$ not be understood to contain implicitely within itself the laws of physics of which it speaks. Otherwise, all the laws of physics, including $P_{2}$ (if $P_{1}$ and $P_{2}$ are both true), could be deduced from $P_{1}$ alone, and $P_{2}$ (whether true or false) would lose its right to be regarded as a principle.

## 3. Circularity and Consistency

A widened logical circle is nonetheless a circle and, ordinarily, a defective plece of argumentation. To meet this objection we must first of all observe that in his seeming 'digression' of p. 46 (i.e. the argument $T \rightarrow \underline{k} \rightarrow P_{1} \& P_{2}$ ). Einstein makes no claim to have the truth of $k$ or, for that matter, of $P_{1}$ and $P_{2}$. His object, twice stated, is to prove that his two grounding principles (Grundprinzipien) are combinable (vereinbar) with one another (p. 46, 1ines 14-16, 28f. [p. 33, lines 22-24; p. 34, 1ines 2f.]). What is at stake is the mutual consistency of $P_{1}$ and $P_{2}$.

Now, is there any reason to suspect that $P_{1}$ and $P_{2}$ are logically incompatible? I think the answer must be "Yes". For the conjunction of $P_{1}$ and $P_{2}$ leads to the highly paradoxical conclusion=-easily stomached only by those of us who have been weaned on the 1905 paper and its later endorsements-that the velocity of light in free space will appear to have the same value for observers in different inertial systems. The paradoxicality of such a claim led Lorentz in 1895 to rescue the Michelson-Morley project with the counter-claim that bodies undergo a shortening in the direction of their motion through the aether. If " $P_{1} \& P_{2}$ " can engender so monstrous a pair as " $\underline{k} \& \underline{k}$ ", perhaps further reflection will derive the canonically contradictory pair "p \& not-p". The burden of proof rests with Einstein.

Bearing in mind that the issue is consistency, not truth, we now make a brief observation on the relation of circularity to consistency. Let $Q$ and $R$ stand for two collections of propositions. The purest (though not the only) instances of circular argumentation would take the form
where $R^{\prime} s$ only title to credence is its derivability from $Q$. The argument form therefore fails to establish the truth of $Q$, for it reduces to the trivial assertion $Q \rightarrow Q$. However, with the question of consistency a different outcome is possible. Let us suppose that the consistency of $Q$ is in question and that there is no direct proof at hand of $Q$ 's consistency or inconsistency. Suppose, however, that such a proof is forthcoming for $R$ (whose only claim to plausibility derives from Q). Then, from the demonstrably consistent propositions $R$ we would have deduced propositions $Q$. But from a consistent group of propositions ( $R$ ) no contradiction can follow. If $Q$ were inconsistent, it would follow that a contradiction lurked, however obscurely, in $R$. Hence the consistency of $R$ implies the consistency of $Q$. In other words, though a circular argument cannot establish truth, it can, under certain conditions, establish consistency.

## 4. The Circle Vindicated

Our task now takes the form of showing that $T$ is consistent. For, if $T$ is consistent and if $T \rightarrow P_{1}{ }^{\prime} \& P_{2}$, it follows that $P_{1}$ and $P_{2}$ are mutually consistent. Is there any direct way in which the consistency of $T$ may be tested?

Let us recall the constituents of $T$. They are the equations

$$
\begin{aligned}
\tau & =\varphi(v) \beta(v)\left(t-v x / c^{2}\right), \\
\xi & =\varphi(v) \beta(v)(x-v t) \\
\eta & =\varphi(v) y, \\
\zeta & =\varphi(v) z, \\
\text { where } \beta(v) & =1 /\left(1-v^{2} / c^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

We must show that each of the equations $T$ is consistent with itself and consistent with the others.

First, the question of self-consistency. We shall assign only real number values to $\tau, \xi, \eta, \zeta, \varphi(v), t, x, y, z$ and, of course, to $c$. Also, we shall restrict $v$ to real number values which satisfy $v^{2}<c^{2}$; hence $B(v)$ is restricted to the real values $1 \leq B(v)<\infty$. Thus, the right-hand members of the five equations take on real number values in all allowable cases. The left-hand members of each equation taken singly do not appear in the righthand expressions; therefore, each left-hand member is free to accomodate itself to the (real) values assumed by the right-hand members. Each equation is therefore self-consistent.

Next we turn to the question of the mutual consistency of the five equations. First, we note that the fifth equation could have been done without: we could replace $\beta(v)$ with $1 /\left(1-v^{2} / c^{2}\right)$ in the first four equations (with the restriction $v^{2}<c^{2}$ ). The question now reduces to the mutual consistency of the first four equations. The right-hand members are, as we saw, limited to real values. But the left-hand member of each equatinn appears uniquely in that equation. Thus, the left-hand members of each of the first four equations can severally and in complete independence from one another absorb the shock of any allowable assignment of real values to the right-hand members. Therefore, the equations $T$ are logically independent and mutually consistent.

Since $T$ is consistent, we conclude that $P_{1}$ and $P_{2}$ are consistent. Einstein, however, makes a broader claim: that $P_{1}$ and $P_{2}$ are consistent. Now, it is certainly not the case that $P_{1}{ }^{\prime} \& P_{2} \longrightarrow P_{1} \& P_{2}$, since $P_{1}$ contains the indefinite proposition $P_{1}{ }^{\prime \prime}$ as well as $P_{1}$ '. However, we analyzed $P_{1}$ into $P_{1}{ }^{m}$ and $P_{1}$ " precisely with a view to isolating that part of $P_{1}$ which is logically relevant to $P_{2} . P_{1}$ " is therefore what is left of $P_{1}$
after the latter has been stripped of all logical relevance to $P_{2}$. Therefore, the conjunction of $P_{1}{ }^{\prime \prime}$ with $P_{1}{ }^{\prime}$ and $P_{2}$ produces no logical inconsistency. Since the (proved) cossistency of $T$ implies the consistency of $P_{1}$ \& $P_{2}$ to which we may without inconsistency conjoin $P_{1}{ }^{\prime \prime}$, we have

$$
\begin{aligned}
& \text { T is consistent, } \\
& \text { and } \text { I is consistent } \longrightarrow P_{1}{ }^{\prime} \& P_{1} \text { \& \& } P_{2} \text { are consistent }
\end{aligned}
$$

therefore $P_{1} \& P_{2}$ are consistent,
which is what Einstein claims to have proved. ${ }^{(12)}$
12. To the consistency proof given above the objection might be raised that at some time a law $L$ might be discovered which contradicts $P_{2}$ Certainly, there is nothing in $P_{1}$ to suggest thet $L$ is false or, for that matter, trrue (see note 11 above). That $P_{1} \& L$ might be consistent with ach other and jointly imply not- $P_{2}$ mereily shows that $P_{1}$ is logically independent of L (or any law of nature, including $\frac{1}{P_{2}}$ ).
Moreover, if the foregoing interpretation is correct, the note at the bottem of p. 46 [p. 34] is unintelligible:

The equations of the Lorentz transformation may be more simply deduced directly from the condition that in virtue of those equations the relation $x^{2}+y^{2}+z^{2}=c^{2} t^{2}$ shall have as its conse-

Suffice it to say that the note does not appear in the 1905 paper and is presumably one of the several additions of the annotator $A$. Somerfeld. EInstein does not claim that $K$ implies $k$; what he does claim is that K (which is implied by $P_{2}$ ) together with $P_{1}$ implles $\mathrm{k}_{0}$ But this claim is comon to the 1905 paper and, for example, the way in which Einstein "more simply" deduces $T$ in his popular exposition of the Special Theory of Relativity (Relativity: the special and General Theory, Appendix I: Crown, 1961). The simpler derivation does indeed beg a question, but not the one which Somerfeld's note suggests (see the following section of this essay).

The foregoing analysis leaves unanswered the first of the two questions raised on page 2: why does Einstein place his consistency argument in the middle of section 3 , thereby interrupting his derivation of the transformation equations? More important is an objection raised in somewhat different forms by P. W. Bridgman, H. Reichenbach, and L. Sonnenfeld: is not Einstein's argument forced into an even wider and perhaps genuinely vicious circle by his use of $D$ in the form $\frac{1}{2}\left(\tau_{0}+\tau_{2}\right)=\tau_{1}$ ( $p$. 44, line 17)?

I believe the question can be given a partly satisfying answer and that the objection can be met. I hope to set forth my arguments thereto within
a few weeks

