Acknowledgements

This project has been made possible with funds from the New York State Association of MPOs. This report was funded in part through grant[s] from the Federal Highway Administration [and Federal Transit Administration], U.S. Department of Transportation. The views and opinions of the authors expressed herein do not necessarily reflect those of the U.S. Department of Transportation. This report was prepared by Regional Plan Association (RPA).

Project Staff

Regional Plan Association
Robert Lane, Director of Design Program
Jeff Zupan, Senior Fellow, Transportation
Paolo Ikezoe, Research Associate

Buckhurst Fish & Jacquemart, Inc.
Georges Jacquemart, Principal
Ritu Mohanty, Senior Urban Designer

Capital District Transportation Authority
Kristina Younger, Director of Planning
Ross Farrell

New York Metropolitan Transportation Council
Larry McAuliffe, TSD Project Manager

New York State Association of MPOs

TSD Steering Committee
Kealy Salomon, Transportation Program Administrator, Poughkeepsie-Dutchess County Transportation Council (PDCTC)
Hal Morse, Executive Director, Greater Buffalo Niagara Regional Transportation Council (GBNRTC)
Jim Arey, Senior Planner, Elmira-Chemung Transportation Council (ECTC)
Ron Epstein, Director, NYSDOT Transit Bureau
Jim Davis, NYSDOT Transit Bureau
Charles Moore, NYSDOT Transit Bureau
Richard Landerkin, Director of Planning, Centro

This report was designed by Paolo Ikezoe, Research Associate, and Jeff Ferzoco, Creative and Technology Director.

Questions can be directed to Robert Lane or Paolo Ikezoe of Regional Plan Association. A copy of this report can be found on RPA’s website: www.rpa.org
Table of Contents

Introduction

<table>
<thead>
<tr>
<th>Introduction</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I: An Intermodal Facility for Albany</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Bus Access to Convention Centers</td>
<td>6</td>
</tr>
<tr>
<td>Bus Rapid Transit (BRT)</td>
<td>7</td>
</tr>
<tr>
<td>Site and Program Analysis</td>
<td>8</td>
</tr>
<tr>
<td>Design Propositions</td>
<td>9</td>
</tr>
<tr>
<td>From Bus Station to Mixed-Use Multimodal Center</td>
<td>11</td>
</tr>
<tr>
<td>District-wide Land Use and Pedestrian Network</td>
<td>14</td>
</tr>
</tbody>
</table>

Part II: State Street as a BRT Boulevard

<table>
<thead>
<tr>
<th>Existing Conditions</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Design Options</td>
<td>17</td>
</tr>
<tr>
<td>Recommended Concept</td>
<td>18</td>
</tr>
</tbody>
</table>

Part III: Next Steps
In the fall of 2007, Albany was selected to be one of the New York State Metropolitan Planning Organizations’ four Transit Supportive Development case studies. The four case studies, each from a different corner of New York State, present a range of challenges and opportunities related to future development around new and existing transit service.

The primary transit mode in this case study was bus and Bus Rapid Transit (BRT), and the study had two main goals: to incorporate a transit center into the proposed convention center in downtown Albany, and to examine State Street in the downtown area as a BRT corridor.

It was these goals that led the Capital District Transportation Authority (CDTA), together with the Capital District Transportation Committee (CDTC), to approach RPA and the New York State Metropolitan Planning Organization (NYSMPO) with the request to be chosen as a case study.

After discussions with major stakeholders and consultants, a series of design proposals, both for the convention and transit center design and for the State Street BRT corridor, were developed. Key findings, discussed in two parts of this report include:

Part 1) Locate a multi-modal transit facility on Broadway near Division Street, which:

→ gives the facility a strong urban presence along a major thoroughfare, while complementing rather than competing with the entrance to the new convention center;

→ offers good pedestrian connections to the center without interfering with service access;

→ provides road and berth space to allow for intermodal connections between CDTA buses, intercity buses, taxis, and cars.

Part 2) Re-imaginine State Street as a BRT corridor, with bus-only lanes located in the median, which:

→ allows for faster, more reliable bus travel times;

→ maximizes the number of on-street parking spaces and loading areas;

→ improves the streetscape of this major downtown artery.
In 2006, the Albany Convention Center Authority (ACCA) was created to study the feasibility of building a convention center in the redevelopment area bounded by Hudson Avenue to the north, Broadway to the east, and Liberty/Green Streets to the south and west.

During this same period, the CDTA was planning for a new Bus Rapid Transit system with a hub in downtown Albany. The existing hub of bus activity is in this same redevelopment area: at the southeast corner of the redevelopment area is the existing Greyhound / Adirondack Trailways Station, which serves the intercity carriers — some fourteen routes and dozens of bus trips per day. CDTA currently stages buses below the elevated Route 787/South Mall Arterial. These buses stop adjacent to the Greyhound/Adirondack Trailways Station before fanning out to some 20 routes accounting for 50% of all CDTA service hours.

Comprehensive planning for the redevelopment area offers the unprecedented opportunity to coordinate the construction of a new state-of-the-art bus hub with the convention center design and construction. This would provide a host of benefits, not the least of which would be maximizing non-auto access to the convention center and, beyond, that to the rest of downtown Albany.

However, complete integration of the new bus hub with the convention center also raised significant challenges:

- The existing facility is privately owned, and negotiations could be complex.
- The convention center funding did not include funds to build the bus facility. While the CDTA could probably access federal transportation dollars for this, there were concerns about the timing to secure that funding, and the potential delays that federal oversight to the project would introduce.
- Even if the new intermodal facility was built on the same footprint as the existing terminal, which is the most remote corner of the redevelopment area, it would still encumber the future Phase II expansion of the convention center. For this reason, the convention center design studies showed the existing facility staying in place during Phase I and being re-built in place under the Phase II expansion. With both the funding and schedule for Phase II of the convention center uncertain, it appeared that the bus hub — whether a new facility or a renovated existing terminal — would be relegated to a marginal location, buried behind the convention center, in the shadow of the elevated freeway, and without any real presence in the downtown.
As part of this study, a brief survey was made of transit access to convention centers. Eight precedents were considered, resulting in several findings:

- **Although rail or light rail connections were not being considered here, it is worth noting that there were no examples where a convention center, even a major, “first tier” convention center, was itself justification for building a new fixed guideway (rail, light rail) connection.** Rather, there are numerous examples of accommodation – where access to an existing station was incorporated into the design.

- **Similarly, there are numerous examples of creating new bus stops at convention centers, but they tend to be stations along existing bus routes.** With the notable exception of Chicago’s McCormick Center, which is connected to downtown Chicago via a dedicated busway, we found no examples of new dedicated bus routes to convention centers.

- **Finally, we found no examples of bus facilities incorporated within convention centers.** This is because convention centers are “footprint” intensive – in general, the best sites are regularly shaped, level and unencumbered by obstacles that would compromise either the functioning of the center or its expansion. Exceptions to this are only in the strongest markets and in places where land values are very high.

- **Overlaying all of these considerations is the fact that public transit modal share to convention centers is relatively modest.** There are, of course, exceptions. Convention centers in dense city centers enjoy a reasonable transit share. Convention centers in auto-oriented environments – and Albany should probably be characterized in this way – will not have a significant transit share.

The ACCA estimates that about 25% of trips will be by transit or walking. This includes employees as well as event arrivals, and assumes an aggressive Travel Demand Management program for the facility.

Collectively, this research suggested that the design studies should look at alternatives to building the intermodal facility into the convention center. This avoids burdening the convention center planning with an obstacle and relegating the transit facility to a “back-of-the-house” service zone. New location concepts opened up the possibilities of what could be explored.
In the last decade, the bus has been rediscovered as a flexible and cost-effective transit alternative. Bus Rapid Transit (BRT) in particular, has come to exemplify this revolution in thinking about rubber wheeled transportation.

BRT systems across the country, and around the world, have very different characteristics, but they share these basic features:

- traffic priority, either through dedicated bus lanes, giving BRT vehicles control over traffic signals, or a combination of the two;
- pre-payment of fares to speed boarding;
- distinctively designed vehicles, to distinguish BRT from existing bus service and/or to provide a faster and more comfortable ride;
- more widely spaced stops;
- redesigned stations and waiting areas featuring improved passenger information.

Many transit agencies, looking for ways to provide higher-levels of service and attract greater ridership, have turned to BRT as a low-cost solution. Cities ranging in size from 150,000 (Eugene, OR) to almost 4 million (Los Angeles) have recently unveiled BRT lines and networks. Though the vast majority of American BRT systems have been implemented fairly recently, early results have been promising, as BRT has proven successful in attracting riders and shortening trip times.

The CDTA has, for over a decade, been considering various mobility options along NY Route 5, a major road linking Albany with nearby Schenectady and the agency’s busiest bus corridor. In 2002, together with the Capital District Transportation Committee, the New York State Department of Transportation and five area municipalities, the CDTA completed the NY5 Land Use and Transportation Study, which recommended a Bus Rapid Transit system to serve the important corridor. In 2005, a conceptual design for the corridor was completed. In mid-2008, environmental clearance of the stations was received and CDTA has now moved into the final design stage. Construction on stations has started in conjunction with roadwork in the corridor. Traffic signal upgrades and queue jump lanes are in design. New hybrid-electric, BRT-styled buses have been purchased and are in operation. Incremental schedule improvements, and technology upgrades, including real-time bus arrivals and off-board ticket machines will result in full “BRT” service by 2009/2010.
The accommodation of an intermodal facility in the same redevelopment area that has been reserved for the convention center presents an interesting problem: the plans of both facilities are driven by the need for major service functions on one side and entry functions on the other. Appropriately, the site itself is organized the same way: a service side along the highway frontage road, and entry frontages along Hudson Avenue and Broadway. In short, the site is highly suitable, from a service-and-circulation perspective, for both facilities. The challenge then is to relate the entry and service functions for the bus terminal to those of the convention center.

A series of concept diagrams was created to test the implications of how the convention center and the bus facility might be sited relative to one another, given the strong service-entry orientations of both the site and the two building programs. These studies were evaluated by the following criteria:

- **Visibility**, in particular, competition for exposure on Hudson Avenue, the primary frontage;
- **Vehicular Circulation**, in particular, service access for buses to the terminal and trucks to the loading docks of the convention center;
- **Levels of Intermodal Connectivity**, in particular between CDTA and intercity carriers as well as taxi, pedestrian and bicycle access throughout the district.
Design Propositions

Proposition 1: Side-by-side

In this diagram, the bus terminal entrance is essentially adjacent to the convention center entry, which joins the entries of the facilities. This solution creates an unencumbered expansion area for Phase I of the convention center, but also raises many problems:

- it requires a reconfiguration of the convention center plan;
- at the back of the site it creates conflicts between bus circulation and convention center loading;
- it would be difficult to justify using valuable Hudson Avenue frontage even for a world-class transportation facility.

Proposition 2: Moving the terminal east

This diagram puts the terminal farther east. The entry would not compete as much with the convention center entry, but it still raises some of the same issues.

- The bus facility is essentially buried in the back of the convention center super block;
- The bus facility constrains future expansion of the convention center;
- Buses coming from State Street need to penetrate most of the depth of the site to get to the loading gate side of the bus terminal.

Proposition 3: Keep current configuration

In this diagram, the bus terminal is rebuilt in place. Though optimal in terms of bus access to and from the highway, the location is problematic for the following reasons:

- The bus facility is essentially buried in the back of the convention center super block. It has no visibility, there is no “passive security” and it is treated as a “second class” use;
- The bus facility constrains future expansion of the convention center.
Design Propositions

Proposition 4: In Balance

In this diagram, the new transit facility is located along the Broadway frontage proximate to Division Street (adjacent to the now-abandoned Trailways bus depot). Trailways abandoned the terminal due to insufficient size at a time when a corporate partnership with Greyhound was formed. Along the Broadway frontage, there are several redevelopable sites identified in the convention center Generic Environmental Impact Statement. Redevelopment was proposed in various ways, for example, as a potentially small park space on site or a boutique-scale hotel.

Certainly, there are problems with this proposal.

- There are few berths for the intercity carriers that have direct access from the indoor terminal waiting areas. However, this problem could be mitigated by the use of state-of-the-art real time signage systems which eliminate the need for each route of each carrier to have a permanently dedicated and assigned berth.

- There will be some friction as CDTA buses will sometimes have to wait while the private carriers back out of their berths, especially in the alternative where both the private carriers and CDTA buses share a single, one-way loop up Liberty and out along Division Street to Broadway. This could be mitigated by widening Liberty Street.

- This concept design does require some reconfiguration of the east end of the convention center frontage; in particular, this requires the reconfiguration of the vertical circulation elements that anticipate Phase II.

Overall, however, this general location is the most satisfactory because it optimizes a variety of parameters.

- It provides visibility and an urban presence for the transit facility without being in direct competition with the convention center entry experience.
- It affords a good pedestrian connectivity to the convention center, without interfering with the convention center entry.
- It allows buses to penetrate the site without adding extra excessive distance from State Street.
- This plan enables more direct car access to the garage with fewer conflicts with buses.
- It allows for intermodal connectivity without interfering with taxi, car or shuttle bus drop off routes. The intermodal connections include:
 - Inbound CDTA bus stops on Broadway to intercity carriers;
 - Intercity carriers to outbound bus stops on Division Street;
 - Taxi, bus connections to the terminal;
 - Pedestrian and bike connections from Broadway, Division Street and Liberty Street in a portion of the site that will have high visibility and the passive security that comes with that visibility.

This location also has two other significant benefits related to long-term implementation: First, by relocating the transit facility to the Broadway blocks, it leaves an unencumbered site for future convention center expansion. This has real value even if the convention center is never built. Redevelopment of the entire district will be more easily accomplished. Secondly, the bus circulation can be made to work without having to build the “break in access” from Market Street to Broadway, which is expensive and time-consuming to implement.

In summary, both the CDTA and private carriers have better access to each other, to the convention center district, and to taxi, bike and pedestrian modes. Both the CDTA and the private carriers would be housed in an attractive, modern facility that will attract ridership.
Underpinning all of the design explorations here is a fundamental shift in the way a bus facility is envisioned.

The existing facility reinforces all of the negative impressions - real and imagined - that are associated with bus transportation: that it is the inexpensive and inferior transit alternative that is used out of necessity by less affluent people who cannot afford to travel by car. Travelers pass through as quickly as possible, leaving the building populated by vagrants and transient inhabitants and creating on-going policing problems. Lack of investment leaves the bus station unattractive and run down. Because this kind of liability repels new investment, the area around the station also suffers from lack of investment.

Unable to compete with “higher and better” uses, the station is sited where land is cheap and the surrounding context is populated with similar low value uses – auto related business, marginal manufacturing businesses and surface parking lots.
In these design and planning studies, the new facility is more than a bus station. It is thought of as a mixed-use building that combines transportation activities with pedestrian-oriented retail or office activities and perhaps even housing above. In this way, it goes from being the unsightly liability hidden from view to an active player in the urban life of a lively downtown entertainment district. Reincarnated in this way, it merits the frontage it has on Broadway, taking its place among the other street-oriented buildings.

In keeping with the concept diagram, the ground floor of the mixed-use building is a waiting room that extends from Broadway to the berths along Liberty Street. This enables easy connections between CDTA bus stops on Broadway and on Division Street and the intercity bus berths along Liberty Street.

This waiting area wraps around a core in the middle of the block that contains the ticketing functions, bathrooms, coffee shop and newsstand. The ground floor would also contain retail activities both for the bus travelers and passers-by on Broadway, Division and Liberty.

In the sketch below, the new mixed-use building continues the now active ground floor uses along Broadway. The massing and fenestration is meant to echo the character of the adjacent buildings. An architectural feature of some kind - suggested here is a vertical ribbon of windows and prow at the upper cornice level - signifies this building as a special destination in the district and marks the Division Street entrance to the rest of the district. A series of architectural canopies help define the space of the sidewalk and provide shelter from the weather as passengers move between the terminal and the lay-by space for CDTA buses on Broadway.
This sketch is a view looking north along Liberty. (In the distance is a new mixed-use building on the former Trailways depot site, which might or might not have functions related to the bus operations). As described above, the new terminal building would be mixed use, with active street-level activities.

Here again, the building is meant to capture the scale and character of the older buildings in this part of the district. A principal feature of the design is the canopy that extends the length of the waiting room in the terminal. This could be extended south to provide overhead protection from the elements to even more of the intercity berths if this is desired. The canopy and storefront structures are treated as important architectural features that are well detailed, use interesting materials and incorporate state-of-the-art real-time signage to create visual interest.

There is no doubt that this is an ambitious proposal that would require a creative redevelopment strategy by the city, CDTA and the ACCA. A public-private partnership would be one implementation mechanism. The private entity would build the building with some equitable contribution by the public for those portions of the project that relate directly to the intermodal activities. This would be a complicated undertaking, but it would create value in the rest of the district, freeing up the entire convention center site and injecting activity on parcels that are abandoned or underutilized.
The location and design of the new transportation facility provides an opportunity to reexamine the overall design of the district. In particular, the large open space in front of the convention center should be reconsidered. While open space in the center of the city is always a welcome amenity, this particular space will likely be of limited value because there are not enough ground floor activities in the surrounding buildings to enliven it.

In these sketches, for both convention center concept plans, we have suggested that in lieu of the major open space, infill development can be used to define the edges of Hudson Avenue and Liberty Street. These would be mixed-use buildings in scale with the surrounding historic fabric. Ground floor commercial uses will activate the streets while new housing above will help revitalize the downtown. This strategy also helps reincorporate the two historic structures that remain on Hudson Avenue.

The siting and design of the new transit facility, as well as the infill development concepts described above, all help to inform an essential idea about the design of this district: that it should be a seamless, pedestrian-friendly experience. A comprehensive streetscape design should link all the destinations. The pedestrian circulation around the transit facility, including the waiting areas by the berths and CDTA lay-by areas, should be appointed as high value urban spaces that are completely integrated into the entire district. Attention must be paid to paving materials, lighting, signage and utilities in ways that support the pedestrian experience. Linkages to destinations beyond the immediate site are important, including the walk up Green Street to State Street and across Broadway to the waterfront. This linkage warrants special attention as it requires employing traffic calming techniques to make it safer and more attractive for pedestrians to cross the heavily used intersection of Broadway and Water Street.

(Left) The preferred design concept (Right) The convention center’s plan, Phase One
The Capital District Transportation Authority (CDTA), the Albany area transit operator, together with the Capital District Transportation Committee (CDTC), the area MPO, are implementing the Bus Rapid Transit (BRT) in the NY Route 5 Corridor. NY Route 5 is a major commuter and commercial corridor connecting Albany to Schenectady and beyond. The easterly end of this route is on State Street in the City of Albany, one block away from the site for the proposed Albany Convention Center. State Street is also the segment of Route 5 that has the highest density of buses in the region today. The passenger boarding activity is also the highest in the region.

The redesign of State Street to improve bus service in this corridor would support the proposed new convention center and intermodal terminal. Bus preferential treatment along State Street would be an important complement to the transit improvements and efficiencies in the area, further supporting development opportunities at the convention center site and the area surrounding it.

The RPA/BFJ team was asked to supplement the efforts undertaken by the NY Route 5 BRT consultant team of TranSystems and Creighton Manning Engineers (CME) by further sketching a design for bus lanes along State Street that incorporated streetscape and landscape enhancements. Exclusive bus lanes were selected for the corridor for several reasons:

• High number and proportion of buses;
• Increased reliability and speed of bus service;
• Increased productivity of bus service for the operators;
• Increased safety;
• Increased visibility of public transit for users;
• Increased ridership and reduced air pollution.

The Streetscape Improvement Plan proposed in 2000 by the Downtown Albany Business Improvement District was incorporated in the new design for State Street between Broadway at the easterly end and Eagle Street at the westerly end.
Part II: State Street as a BRT Boulevard

State Street carries about 17,000 vehicles per day total between Eagle Street and Pearl Street, and 6,600 vehicles between Eagle Street and Broadway. During peak hours traffic volumes on State Street are about 800 to 900 vehicles (in both directions) between Eagle and Pearl Streets, and 600 to 700 between Pearl Street and Broadway.

Multiple transit carriers use the corridor, including CDTA, Yankee Trails, and Brown Coach. Data provided by CDTA showed that there are 166 buses per hour (more than 2 per minute) on State Street near Lodge and Pearl Street. Of these buses, 133 (about 88%) are CDTA buses. CDTA bus volumes along State Street are between 120 and 130 during peak hours. With the other carriers, bus traffic represents about 20% of the total traffic along State Street.

Figure 1 shows the existing layout of State Street. The segment west of Pearl Street has diagonal parking spaces on both sides. East of Pearl Street parking is parallel. The total number of parking spaces today is 113.

Over the 7-year period from January 1, 2000, through December 31, 2006, there were a total of 139 collisions reported along State Street. About 39 (or 28%) of these collisions occurred between intersections, with a great majority of them between Eagle Street and Pearl Street, the section of State Street where diagonal parking is allowed. 25 of the crashes (or 18%) were pedestrian or bicycle crashes. Almost half of these occurred at the intersection with Pearl Street. While most of these caused property damage only, this rate is higher than the statewide average for similar facilities.

Pedestrian accommodations are present at all locations and typically include crosswalks, pedestrian indicators, countdown timers, and center refuge islands. Field observation by CME of pedestrians crossing the street showed that there were a total of 104 pedestrians at the Eagle Street/State Street intersection during the AM peak hour and 156 during the PM peak hour. At the Lodge Street/State Street intersection there were 493 and 321 during the AM and PM peak hours, respectively. The Pearl Street/State Street intersection had the highest number of pedestrians crossing the street with 764 during the AM peak hour and 717 during the PM peak hour.

Field observations indicated that transit vehicles currently conflict with passenger vehicles in the study area due to the location of existing transit stops and the sheer volume of transit vehicles through the study area. Though there are existing conflicts, the intersections generally operate adequately during both the AM and PM peak hours, with the exception of the northbound Eagle Street approach to State Street, which operates with long vehicle queues during both the AM and PM peak hours. This is partially due to the location of the stop bar at the intersection that limits the amount of green time available for this movement, causing the signal phase to be inefficient.
Two initial design options were developed for this portion of State Street. These concepts responded to the two most typical bus lane designs: a bus lane at the outer edges of the street or in the center of the street. The purpose of exploring these two design options was to understand the implications of the exclusive bus lanes on the bus operations and on all other functions of State Street, including pedestrian circulation, overall safety, parking and loading activities, bus passenger loading and alighting.

Alternative 1: Outer Bus Lane

A bus lane at the outer edges of the street, as illustrated to the left, would allow passengers easy access to bus stops by not requiring them to cross the traffic lanes. However, there are two main drawbacks.

- **Bus stops located along the outer street curbs will negatively impact the number of on-street parking spaces available.** The total number of parking spaces available in this option will be approximately 62 spaces, a reduction of 51 spaces compared to existing conditions. In this design option, buses may often be delayed due to the parking maneuvers and high number of right-turns into side streets and the right-turn vehicles having to yield to the pedestrians crossing the street.

- **Bus stops at the outer edge of the street will be hampered by pick up/drop off, deliveries and curbside loading and unloading.** In areas without loading and unloading spaces, delivery vehicles often park in the adjacent lanes and this would negatively affect bus operation.

Alternative 2: Center Bus Lanes

While the median bus lane arrangement, shown here on the right, would require passengers to cross the general-purpose lanes to access the bus stops, the major benefit of this design option is that the travel time delays along the route and at intersections can be significantly reduced. This would guarantee greater reliability for the BRT service. This design concept offers significant advantages.

- **It maintains convenient loading-unloading and parking at curb side of the traffic lanes.** The total number of parking spaces in this option will be approximately 75 spaces, resulting in a net loss of only 38 spaces.

- **It also allows for easy access to the hotel site adjacent to the corridor, thereby facilitating convenient drop off and pick up for hotel customers as well as for delivery vehicles.**

- **The fact that bus passengers have to cross the traffic lanes is not a real problem since the crossings occur at signalized pedestrian crossings and the overall crossing distances will remain the same.** With the outer bus lanes the typical bus passengers will have to cross all of State Street once a day, and with the center bus lanes the passengers have to cross half of State Street twice a day.
The median bus lane is preferred to the bus lane at the outer edges of the street since it would further enhance the reliability of bus travel times, increase the number of parking spaces available, including two valet spaces for the hotel site, and allow relatively convenient loading-unloading at the curbs. Based on the initial feedback from CDTA, CDTC, the City, and the BID, CME performed further analysis of this center lane operation, including simulation modeling, which resulted in modifications to the proposal to enhance its effectiveness and mitigate negative impacts.

The recommended configuration proposes two stops on State Street in the eastbound direction, one west of Lodge Street and the other east of South Pearl Street. It proposes one stop in the westbound direction for this same area, west of South Pearl Street in addition to a westbound stop on Eagle Street.

As illustrated in the graphic below, the westbound exclusive bus lane starts at about 100 feet from Broadway and stops at Lodge Street. Westbound buses would obtain signal priority at Lodge Street to allow them to move into the traffic lanes to make a right turn or left turn at Eagle Street. The eastbound exclusive bus lane starts at Eagle Street and stops midblock, at about 100 feet east of the intersection with South Pearl Street. All curb-side bus stops are eliminated with this proposal.

The recommended concept provides an improved overall image of State Street through attractive landscape development at the median and on either side of the street. A landscape strip at the median would include grass, low level planting and, where feasible, street trees to add to the ‘boulevard image’ of State Street. Regularly spaced street trees planted between roadway and sidewalk will provide a sense of protection for the pedestrians. Rows of trees also help to visually unify the buildings that line the roadway. Bus stop shelters, benches and other furniture will be designed to add to this attractive streetscape image. Working with the City and the BID, wayfinding and other cultural signage, including holiday lighting, can be incorporated.

The recommended concept also provides a bus-only signal phase actuated by buses, so that buses are not in conflict with permitted left-turning traffic. BRT buses do not need to stop at Lodge Street and a by-pass for BRT buses should be considered. BRT buses can be directed into the general traffic lane on the southbound Eagle Street approach to State Street and be allowed to enter the bus-only lane during the east-west phase at the Lodge Street/State Street intersection.

The preliminary traffic analysis included in the Appendix shows that adequate capacity can be provided at the State Street intersections with construction of exclusive bus lanes as shown on the recommended concept plan. The plan needs to include the ability for buses to by-pass stops and other buses. Exclusive bus lanes will reduce conflicts with adjacent landowners over bus stops. Bus stop platforms built at a height to allow for level boarding with the low-floor CDTA buses will reduce dwell times and eliminate delays associated with wheelchair boardings.
As shown in the cross-sections below, the overall streetscape of State Street will be significantly improved.

PROPOSED STATE STREET BETWEEN LODGE STREET AND PEARL STREET

PROPOSED STATE STREET BETWEEN EAGLE STREET AND LODGE STREET

State Street between Pearl Street and Broadway
PART III: Next Steps

Test Adaptive Re-use of Existing Building

The concept described here involves the adaptive reuse of the ground floor of the historic building on the south side of Hudson Street. The upper floors could be some mix of offices and apartments.

The design concept also suggests that a new mixed-use building just to the south of the historic building could be part of the new mixed-use facility. Floors could interconnect between the new and existing building.

These ideas need to be tested both from a technical perspective to determine whether the old building can be converted into a modern facility. Also, the current owners must be approached to better understand their receptivity to these ideas.

Determine Consistency with Other Policies and Regulations

The redevelopment zone regulations should be checked to make sure that they can support the land uses and configurations in this proposal. Possible issues include: limitations on mixed-use; off-street parking requirements; historic district regulations. The ideas presented in this study should be checked for consistency with other policies and regulations. This includes the city’s Master Plan, zoning regulations and the regulations and bylaws specific to the convention center redevelopment plans.

District-wide Pedestrian Plan

As described in the body of this report, there is an opportunity to link the new intermodal facility and the larger redevelopment area to the rest of the downtown and the waterfront. This involves a variety of pedestrian improvements that extend beyond the redevelopment area and include the pedestrianization of the “gateway” intersection of Broadway and Water Street and pedestrian linkages to State Street and the new BRT corridor along State Street and Broadway. A full pedestrian/bicycle study should be undertaken to identify streetscape improvements, intersection improvements and other strategies. A comprehensive streetscape plan is also another way to create a comprehensive and unifying design for the district and its integration into the rest of the downtown.

Engage Private Carriers on Facilities and Operations

The consultant team believes that the benefits of the proposed configuration far exceed what are comparatively minor compromises around operations. Nevertheless, the private carriers should be engaged in order to better understand their operational priorities with the goal of making adjustments to the plan.

Coordinate with City-Sponsored Streetscape Project

There is a significant opportunity for the City, CDTA, the Downtown Albany Business Improvement District (BID) and others to work together on a complete State Street boulevard project.
Through information sharing, research and training programs, the NYSMPOs helps each MPO address federal and state transportation policies and programs. The directors of all thirteen MPOs in the state meet regularly throughout the year. By convening, the association enables each individual MPO to better serve its own region by sharing information. In addition, working groups on topics such as safety, air quality and geographic information systems (GIS) meet periodically. Pooling financial resources, the association also conducts research and training programs, known as Shared Cost Initiatives. The NYSMPO’s paid for the three Transit Supportive Demonstration projects and the a Statewide TSD guidebook presented here, using this common fund source.

Regional Plan Association
4 Irving Place, Room 711-S
New York, NY 10003
T: (212) 253-2727
www.rpa.org

Regional Plan Association (RPA) is an independent, not-for-profit regional planning organization that improves the quality of life and the economic competitiveness of the 31-county New York-New Jersey-Connecticut region through research, planning, and advocacy. For more than 80 years, RPA has been shaping transportation systems, protecting open spaces, and promoting better community design for the region’s continued growth. We anticipate the challenges the region will face in the years to come, and we mobilize the region’s civic, business, and government sectors to take action.

BFJ Planning
115 5th Avenue
New York, NY 10003
T: (212) 353-7474
www.bfjplanning.com

BFJ Planning (BFJ) is a multi-disciplinary consulting firm providing professional expertise in urban planning and design, transportation planning, real estate consulting, and environmental analysis. The firm’s work is distinguished by a high degree of participation by its principals in the technical work of each project, exceptional capabilities in graphic design (including GIS) and presentation, and a strong commitment to participatory planning. BFJ has successfully completed more than 1,000 projects in the U.S., East Asia, Europe, and South America.