
SEC573 | Automating Information Security with Python

getting the most our of freq and domainstats.py

@markbaggett

1

SEC573 | Automating Information Security with Python

Get-ADUser -Filter "Mark Baggett"| fl -Properties *

• Mark Baggett
• Penetration Testing and Incident Response Consulting
• Senior SANS Instructor
• Author of SANS SEC573 Automating InfoSec with Python
• Masters in Information Security Engineering
• GSE #15
• DoD Advisor, Former CISO 18 years commercial

SEC573 | Automating Information Security with Python

Todays Topic

• Using freq.py and freq_server
• Help Analysts Using Security Onion to interpret "FREQ SCORES"
• Help Administrators "tweek" their configurations to do more with

the tool that the "out of the box" configuration

• Same thing for domain_stats.py

3

SEC573 | Automating Information Security with Python

Intro to Domain Stats

• SEC555 "SEIM with Tactical Analysis" with Justin
Henderson and Baby Domains
• Malware domain are typically much "younger" than legitimate

domains!
• Looking up every domain via whois is slow and can get you

blacklisted.
• Querying whois from a SEIM is non-trivial

• Domain_stats.py was born!
• Solves problem by caching and prefetching common domains.
• Provides an easy to use API for SEIM integration

4

SEC573 | Automating Information Security with Python

"Normal" Domain Creation Dates

• student@573:~$ whois ukvkloytfaw.bid | grep "Creation"

• Creation Date: 2017-10-28T02:02:08Z

• student@573:~$ whois xct31.net | grep "Creation"

• Creation Date: 2006-07-27T20:36:16Z

• student@573:~$ whois xcukrfpchsxn.com | grep "Creation"

• Creation Date: 2017-04-17T11:17:18Z

• student@573:~$ whois ybrjldiexlqb.com | grep "Creation"

• Creation Date: 2018-01-30T06:48:07Z

• student@573:~$ whois bbqqjejhd.bid | grep "Creation"

• Creation Date: 2018-01-14T06:23:10Z

5

SEC573 | Automating Information Security with Python

Malware Domain Creation Dates

student@573:~$ whois reddit.com | grep "Creation"

Creation Date: 2005-04-29T17:59:19Z

student@573:~$ whois slack.com | grep "Creation"

Creation Date: 1992-10-21T04:00:00Z

student@573:~$ whois instagram.com | grep "Creation"

Creaion Date: 2004-06-04T13:37:18Z

student@573:~$ whois meetup.com | grep "Creation"

Creation Date: 1998-08-20T04:00:00Z

student@573:~$ whois whatsapp.com | grep "Creation"

Creation Date: 2008-09-04T12:39:12Z

6

SEC573 | Automating Information Security with Python

Installing and Running Domain_stats

• Run "python -m pip install python-whois"

7

SEC573 | Automating Information Security with Python

Query the Creation date from SEIM APIs

• Now you can query whois via an easy web request

• Domains are cached locally for speed and minimizing use
of whois servers

• So Security Onion can consume this data and present it to
the analyst!

• Justin Henderson has config for many SEIM products

8

SEC573 | Automating Information Security with Python

Not just CREATION_DATE

• Every field in
the whois record
is available via
the API.

• You can ask for
all of it

• You can ask for
one field

• You can ask for
multiple fields

9

SEC573 | Automating Information Security with Python

You can ask for more than just CREATION_DATE

• Full API documentation on http://github.com/markbaggett/domain_stats

10

Query
Multiple

Fields

or one

* to access multi-
value fields

SEC573 | Automating Information Security with Python

Alexa Ranking of Domains

• Use DOMAIN_STATS to see what the Alexa rank of a
domain is

• As soon as you give DOMAIN_STATS an Alexa file it will
attempt to preload its cache with most common domains

• Controllable with --preload

• Update Top 1M at http://s3-us-west-1.amazonaws.com/umbrella-static/index.html

11

SEC573 | Automating Information Security with Python

BETA TESTING A NEW FEATURE

• Punycode/IDN Domain resolution:

• Feature requests by N7FAA52318.
• Implemented but not committed to main branch
• If you are interested in this feature I am seeking testers.

12

$ curl http://127.0.0.1:8000/punycode/xn--n28h
😉
$ curl http://127.0.0.1:8000/punycode/xn--g6h8599noea
👁♥🐍

SEC573 | Automating Information Security with Python

Performance Over Accuracy: Understanding the Cache

• By Default DOMAIN_STATS preloads the top 1000 most
frequently used domains from disk cache!
• This is GREAT!! For CREATION_DATE which doesn't change
• Undesirable if the company changes their DNS servers

• Items stay in cache for as long as you are querying that
domain at least once a week

• Run "update_diskcache.py" at an interval you are happy
with to make sure you have the latest data

• Requires that you restart your domain_stats server.

13

SEC573 | Automating Information Security with Python

You: "Couldn't you do XYZ" Me: "Yes, but performance"

• You have control of caching options on the CLI

• You can disable local disk cache of top 1000

• You can disable preloading common domains in background

• You can control how long unused items are held in cache

14

SEC573 | Automating Information Security with Python

GO ALL IN!!

• If you only need creation_date then you don't need the
online whois. PUMP UP THE DISK CACHE BABY!

15

SEC573 | Automating Information Security with Python

What are DGAs

16

• Imagine all the attacker bots are talking to mybotnet.com

• Law enforcement takes down mybotnet.com
• Network defenders block mybotnet.com

• Attackers would like bots to reconnect to new domain!

• New domain needs to be obscure enough to be available for
purchase by the attacker. (ie , not already be owned)

• Need an almost infinite number of possibilities because
defenders might keep blocking their domains!

• Use "Domain generation algorithms" to automatically choose
new domains in a way that is predictable to the attacker.

• These domains typically look like random strings of characters
• Found in SSL certificates, DNS logs and HTTP headers more.

lkjy24nsnkh.biz

SEC573 | Automating Information Security with Python

Intro to Freq.py and Freq_server

• SEC511 "Continuous Monitoring and Security Operations"
with Seth Misenar

• freq.py and freq_server.py were born!
• Gives reliable "scores" to identify DGA domains
• How does it work? Lets look.

17

C:>echo "reddit.com" | ent.exe
Entropy = 3.640224 bits per byte.

C:\>echo "youtube.com" | ent.exe
Entropy = 3.625000 bits per byte.

C:\>echo "ukvklo.bid" | ent.exe
Entropy = 3.640224 bits per byte.

C:\>echo "ybrjl.com" | ent.exe
Entropy = 3.664498 bits per byte.

SEC573 | Automating Information Security with Python

BAD BANANAS

B1

A1

We analyze streams of legitimate text as character pairs to build a frequency table

SEC573 | Automating Information Security with Python

BAD BANANAS

B1

A1

We analyze each pair counting the appearance of first and second characters.

A1

D1

SEC573 | Automating Information Security with Python

BAD BANANAS

A1

You may want to ignore some characters such as space, semicolon and other characters
in the data you analyze if they do not commonly appear in the data you are searching. This is
controllable by specifying the --ignorechars command line option.

The original freq.py ignored these characters while building the tables.

The new freq.py tallys every character are ignored specified characters during calculations.
This means one table can work in all multiple situations.

A1B1

D1
D1

ƀ1

SEC573 | Automating Information Security with Python

BAD BANANAS

D1

ƀ1A1
A1B1

D1 B1
ƀ1

SEC573 | Automating Information Security with Python

BAD BANANAS

D1

ƀ1A2
A1B2

D1 B1
ƀ1

SEC573 | Automating Information Security with Python

BAD BANANAS

D1

ƀ1A2
A2B2

D1 B1
ƀ1

N1

SEC573 | Automating Information Security with Python

BAD BANANAS

D1

ƀ1A2
A4B2

D1 B1
ƀ1

A2
N2

N2

S1
When we finish we get a table that looks like this.

For this small data set:
- 100% chance that B is followed by A
- 100% chance that N is followed by A
- 50% chance that A is followed by N
- 25% chance that A is followed by D
- 25% chance that A is followed by S

We can analyze large volumes of data to build probabilities of normal text.

SEC573 | Automating Information Security with Python

Two methods of measuring "Normal" text

• Method 1 - "Average Probability"
• Built into Original freq.py
• Based on average probability of pairs

• Method 2 - "Word Probability"
• Only available in latest update
• Based on probability of the entire word

25

SEC573 | Automating Information Security with Python

r24138
e3092346
2

d112312

.23412

Here is what a portion of a complete table might look like.

Now lets measure probability of:

queen
e9923
4
i18241

b1311

o4821

p17182

n129141

u62

;12

ƀ31511

N32
2E14

R238
E23462

D1312

.45412

y99

i1567

b11

o1

p182

n121

u5673

;12

ƀ31511

N32
2

X9823

u440
q462

.20

x2

i0

b0

o0

p0

n0

u0

;0

ƀ0

No

r238
u3462

e1112

.212

y34

i141

b131

o821

p182

n1141

u62

;12

ƀ311

N32

E14

SEC573 | Automating Information Security with Python

r24138
e3092346
2

d112312

.23412

METHOD 1:

Here is what a portion of a complete table might look like.

Now lets measure probability of:

queen

qu = 440/462 = 0.952 or 95%

e9923
4
i18241

b1311

o4821

p17182

n129141

u62

;12

ƀ31511

N32
2E14

R238
E23462

D1312

.45412

y99

i1567

b11

o1

p182

n121

u5673

;12

ƀ31511

N32
2

X9823

u440
q462

.20

x2

i0

b0

o0

p0

n0

u0

;0

ƀ0

No

r238
u3462

e1112

.212

y34

i141

b131

o821

p182

n1141

u62

;12

ƀ311

N32

E14

SEC573 | Automating Information Security with Python

r24138
e3092346
2

d112312

.23412

METHOD 1:

Here is what a portion of a complete table might look like.

Now lets measure probability of:

queen

qu = 440/462 = 0.952 or 95%
ue = 1112/3462 = 32%

e9923
4
i18241

b1311

o4821

p17182

n129141

u62

;12

ƀ31511

N32
2E14

R238
E23462

D1312

.45412

y99

i1567

b11

o1

p182

n121

u5673

;12

ƀ31511

N32
2

X9823

u440
q462

.20

x2

i0

b0

o0

p0

n0

u0

;0

ƀ0

No

r238
u3462

e1112

.212

y34

i141

b131

o821

p182

n1141

u62

;12

ƀ311

N32

E14

SEC573 | Automating Information Security with Python

r24138
e3092346
2

d112312

.23412

Here is what a portion of a complete table might look like.

Now lets measure probability of:

queen

qu = 440/462 = 0.952 or 95%
ue = 1112/3462 = 32%
ee = 24126/30923462 = 1%
en = 129141/30923462 = 3%

Average Probability = 42%*
*put down calculators. All numbers are fictional examples

e9923
4
i18241

b1311

o4821

p17182

n129141

u62

;12

ƀ31511

N32
2E14

R238
E23462

D1312

.45412

y99

i1567

b11

o1

p182

n121

u5673

;12

ƀ31511

N32
2

X9823

u440
q462

.20

x2

i0

b0

o0

p0

n0

u0

;0

ƀ0

No

r238
u3462

e1112

.212

y34

i141

b131

o821

p182

n1141

u62

;12

ƀ311

N32

E14

SEC573 | Automating Information Security with Python

r24138
e3092346
2

d112312

.23412

Here is what a portion of a complete table might look like.

Now lets measure probability of:

ebuuq

eb = 1311/3092346 = .09%
bu = 52233/521 = 5%
uu = 62/3462 = 3%
uq = 331/3462 = 0.2%

Average Probability = 2.4%*
*put down calculators. All numbers are fictional examples

e9923
4
i18241

b1311

o4821

p17182

n129141

u62

;12

ƀ31511

N32
2E14

R238
b52233

D1312

.45412

y99

i1567

b11

o1

p182

n121

u521

;12

ƀ31511

N32
2

X9823

u440
q462

.20

x2

i0

b0

o0

p0

n0

u0

;0

ƀ0

No

r238
u3462

e1112

.212

y34

i141

b131

o821

p182

n1141

u62

;12

q311

N32

E14

SEC573 | Automating Information Security with Python

r24138
e309234

d112312

.23412

METHOD 2:

Here is what a portion of a complete table might look like.

Now lets measure probability of:

queen

qu , first = 462, sec = 440

Total first = 462
Total second = 440

e9923
4
i18241

b1311

o4821

p17182

n129141

u62

;12

ƀ31511

N32
2E14

R238
E23462

D1312

.45412

y99

i1567

b11

o1

p182

n121

u5673

;12

ƀ31511

N32
2

X9823

u440
q462

.20

x2

i0

b0

o0

p0

n0

u0

;0

ƀ0

No

r238
u3462

e1112

.212

y34

i141

b131

o821

p182

n1141

u62

;12

ƀ311

N32

E14

SEC573 | Automating Information Security with Python

r24138
e309234

d112312

.23412

METHOD 1:

Here is what a portion of a complete table might look like.

Now lets measure probability of:

queen

qu , first = 462, sec = 440
ue, first = 3462, sec = 1112

Total first = 3942
Total second = 1552

e9923
4
i18241

b1311

o4821

p17182

n129141

u62

;12

ƀ31511

N32
2E14

R238
E23462

D1312

.45412

y99

i1567

b11

o1

p182

n121

u5673

;12

ƀ31511

N32
2

X9823

u440
q462

.20

x2

i0

b0

o0

p0

n0

u0

;0

ƀ0

No

r238
u3462

e1112

.212

y34

i141

b131

o821

p182

n1141

u62

;12

ƀ311

N32

E14

SEC573 | Automating Information Security with Python

r24138
e309234

d112312

.23412

Here is what a portion of a complete table might look like.

Now lets measure probability of:

queen
qu , first = 462, sec = 440
ue, first = 3462, sec = 1112
ee, first=309234,sec=99234
en, first=309234,sec=129141

Total first = 4080930
Total second = 2299270
229927/4080930 = 6%

e9923
4
i18241

b1311

o4821

p17182

n129141

u62

;12

ƀ31511

N32
2E14

R238
E23462

D1312

.45412

y99

i1567

b11

o1

p182

n121

u5673

;12

ƀ31511

N32
2

X9823

u440
q462

.20

x2

i0

b0

o0

p0

n0

u0

;0

ƀ0

No

r238
u3462

e1112

.212

y34

i141

b131

o821

p182

n1141

u62

;12

ƀ311

N32

E14

SEC573 | Automating Information Security with Python

Where do "legit" domains score?

• Method 1 scores are greater than 5
• Method 2 scores are greater than 4

34

SEC573 | Automating Information Security with Python

Scores for malicious domains?

• Method 1 < 5
• Method2 < 4!

35

SEC573 | Automating Information Security with Python

Why is Method 2 better?

• A single "qu" pair can make the un-probable probable.

• Letters are weighted base on how common they are in
normal text. So "rstlne" have more effect on score than "qxz"

36

SEC573 | Automating Information Security with Python

Installing and starting freq_server.py

• No module dependencies. Just download and execute!

37

SEC573 | Automating Information Security with Python

SEIM can Access the Server with /measure[1,2]/domain

38

/measure1/<str>

/measure/<str>

/measure2/<str>

SEC573 | Automating Information Security with Python

Freq.py Makes freq_server.py Much Better!

• Customize your frequency tables for your specific environment!

• Build new frequency tables
• Adjust values by adding domains to freqtable2018.freq
• Measure domains from the CLI and other tools

39

SEC573 | Automating Information Security with Python

Build Special Purpose frequency tables

1) Use Powershell to create a list of all files on a file system

2) Create a custom frequency table for filenames

40

PS C:\> gci -recurse | select -Property Name | Out-File -FilePath c:\allfiles.txt -Encoding ascii

$ python3 freq.py -c win10files.freq
$ python3 freq.py -f ~/Desktop/allfiles.txt win10files.freq
$ python3 freq.py -m cmd.exe win10files.freq
(7.4876, 4.8509)
$ python3 freq.py -m aslkjfl.exe win10files.freq
(3.696, 2.9249)

SEC573 | Automating Information Security with Python

Use Special Purpose Tables with the API

1) You can pass multiple frequency tables to freq_server

2) Replace measure, measure1 or measure2 with the table name!

41

$ python3 freq_server.py 8080 freqtable2018.freq win10files.freq

SEC573 | Automating Information Security with Python

Or Just Use Security Onion

42

SEC573 | Automating Information Security with Python

What if the tool doesn't do exactly what you need?

• Let me know. I'm happy to support these

• Come check out SEC573 and I'll show you how to
customize any Python program to do exactly what you
need!

43

SEC573 | Automating Information Security with Python 44

