RegistryDecoder API Document
Version 1.1
11/1/2011

This document attempts to clearly explain the RegistryDecoder API for developing
plugins. The API was designed for ease of use and readability for people with
little or no programming (or Python) experience. Yes it is a bit verbose :) See
the examples at the end of this document. For further clarification, see the
plugins in the source distribution.

Intro:

A plugin file is a text file of Python code. At a minimum it must include the
following 2 elements:

1. Definition of three plugin attributes in the global scope:

e pluginname - the string-formatted name of this plugin

e description - the short string-formatted description of this plugin

e hive - the string-formatted hive file this plugin runs on; must be exactly
one of the elements of the set ("NTUSER", "SAM", "SECURITY", "SOFTWARE",
"SYSTEM"); more advanced plugins which run on more than one hive type may

use the attribute hives, with a list of any of the hive types listed above

2. Definition of a function named run me which is called when the plugin is run
by the system

e.g., def run me():
pass

Plugins have access to all of standard Python, as well as access to the
following API functions:

Registry key functions:

Given a string-formatted registry key path, returns the key object. If the path
does not exist, returns False. The string must begin with "\".
reg _get_ key(path)

Given a string-formatted registry key path, returns the key object. If the path
does not exist, the plugin terminates. Use for plugins which should just fail
if the given path is not found. The string must begin with "\".

reg get required key(path)

Given a key object, returns the string-formatted key name.
reg_get_key name (key_object)

Given a key object, returns string-formatted lastwrite time for the key.
reg get lastwrite (key object)

Given a key object, returns the (possibly empty) list of its child key objects.
reg get subkeys (key object)

Given a key_object, returns the (possibly empty) list of its value_ objects.
reg get values (key_ object)

Given a key object and the string formatted name of a value contained in that
key, return the data associated with that value. Returns None if the named value
does not exist.

reg get data_ for value name(key object, name-string)

Registry value functions:

Given a value object, returns its string-formatted name.
reg_get_value_name (value_object)

Given a value object, returns its string-formatted data. The formatting is done
automagically using the value's type (REG SZ, etc.). This is not always correct.
reg get value data(value_object)

Reporting functions:

Here "report" refers to the output generated by a plugin to be displayed in the
GUI. Reports are generated dynamically as tables, row by row, in each plugin
using the following functions. All reports consist of:
e an (auto-generated) header detailing the plugin name, and the file the
plugin was run against
® an optional timestamp, set by reg set report timestamp
e optional table column headers, set by reg set report header
e zero or more of rows of data, normally generated one at a time by
reg report

Set headers for columns for report generated by this plugin. header is a tuple
of header names. E.g., to set column names of "name" and "data", e.qg.

reg_set report header ((“name”, “data”))

reg_set report header (header)

The header of a plugin's output can optionally report a timestamp. This is
timestamp is generally based on the lastwrite time of some registry key. Given a
string-formatted date/time, this function sets the timestamp reported in the
header.

reg _set_ report timestamp (timestamp)

Add to the reported plugin output the row data as a Python tuple. Following the
example from reg set report header above, a row of results can be added to the
report as follows: reg report(("some value name", "that value's data"))

reg report (report_data)

Simplification function. Given a key object key, add to the plugin's output
report rows with all value names and data for key.
reg report values name data (key)

Same as reg report values name data above, except the output is filtered. Only
values whose name appears in name-list will have their name / data reported.
reg report values name data filtered(key, name_list)

Utility Functions
These functions are for operations commonly required by plugins.

Returns the string current control set number (e.g., "001"), or exits the plugin
if the current control set cannot be determined. Note: always exits the plugin
if called on a non-SYSTEM hive file.

reg get currentcontrolset()

Given a unixtime integer, returns the string-formatted date and time.
pretty unixtime (unixtime)

Given a Windows 128-bit datetime object, returns the string-formatted date and
time.
pretty datel28 (datel28)

Given a Rot-13 encoded string, returns the original string.
un_rotl3(rotl3_string)

Writing and Testing Plugins

The most efficient method to test plugins is from the command line. Users who
are developing plugins from a source code checkout can simply place them in
templates/template files. Otherwise, a separate folder can be created and its
path can be given on the command line following the “-d” parameter. For example,
if you are testing with the Pyinstaller distributed application:

regdecoder.exe —-d <path to your plugins directory>

Testing plugins from the commandline is fully supported, but less flexible than
the GUI. The invocation to run a plugin from the command line is:

regdecoder.exe <case directory> <plugin name> <file 1id> <extra plugin directory
(optional)>

Where “case directory” is the folder of the Registry Decoder created case.
“Plugin name” is the name of the plugin as it appears in the plugin’s name
member. This is the same information that appears in the GUI drop down list of
plugins. “Extra plugin directory” is the same as that can be passed as the -d
parameter.

The “file id” is a little more complicated. To handle multiple files within a
case, Registry decoder uses a file id per hive for tracking. To determine the
file id of a file from a case you want to test, you need to examine the
evidence database.db within your case folder. This is Sglite database, and can
be viewed with the Sglite3 command of any Linux distribution or the Windows
binary package.

To see all filenames along with their file ids, please run this query from the
Sglite3 console:

select filename,id from evidence sources;
The filename column contains the name of the registry file and the id column is
the file id for the file. To ensure that file id handling does not become an

issue, it is recommended to load only a few individual registry hives into
Registry Decoder when developing and testing plugins.

Examples:

B T T R T T R
Windows 7 Word Wheel Query search terms list
Required plugin attributes:
pluginname = "Word Wheel Query"
description = "Lists Windows 7 user-entered search queries."
hive = "NTUSER"
Required function to be called by RegstryDecoder on execution:
def run_me():
regkey = reg_get_required_key("\Software\Microsoft\Windows\CurrentVersion\Explorer\WordWheelQuery")
reg_report_values_name_data(regkey)
B T A T R A R R R T R AR R R
Recently accessed user documents

Required plugin attributes:

pluginname = "Recent Docs"
description = "Displays files and folders recently accessed by this user."

hive = "NTUSER"
Required function to called RegistryDecoder on plugin execution:
def run_me():

regkey = reg_get_required_key("\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs")
values = reg_get_values(regkey)

for val in values:
name =reg_get value_name(val)
data = reg_get value_data(val)
if name == "MRULIstEx" and data:
if len(data) == 1:
data = ord(data)

reg_report((name, data))

R R R R R B R R R R R R R R R R R R

