ON THE TRANSMISSION OF DESIGNS
IN EARLY ISLAMIC ARCHITECTURE

Historians of architecture often speak of how one building "influenced" or was "modeled on" another, but these easy phrases often conceal an imprecise understanding of the mechanisms by which the transfer of ideas and forms was effected. As it was Oleg Grabar who first drew my attention to the subject, a festschrift in his honor seems a distinctly appropriate moment to add some further words on how architectural ideas were transmitted in the Islamic world.¹

A preliminary discussion of the subject was presented by Renata Holod in an article in which she differentiated transmission by example from transmission through systems of verbal or visual notation.² She noted that all of these means of transmitting architectural knowledge were available in the Islamic world, primarily because its civilization had paper, and she gave several examples of each type of transmission. While there can be no question that visual systems were eventually available, much doubt remains about when they were first used. Actual plans and architectural drawings from the Islamic world as well as unequivocal textual references to them indicate that plans were used as early as the thirteenth century and became relatively common in the fifteenth.³ The evidence for the earlier period is far less clear, as no actual plans are known to survive from pre-Mongol times.⁴

In the absence of actual plans, much of the argument about the first use of visual notation rests on extrapolation from later or corollary information, particularly verbal notation. For example, a key text cited is the al-kuttāb wa`l-ʿummal min ʿilm al-ḥisāb (Book of the things that writers and secretaries need to know about arithmetic) by Abu’l-Wafa’ al-Buzajani (940–98), the noted theoretical mathematician who lived in Baghdad.⁵ Holod argued that the existence of such a text implies the existence of a genre of written works for craftsmen, for whom a modicum of literacy can be assumed. It seems hardly likely, however, that Buzajani’s text, which is known only from later Arabic and Persian copies,⁶ was intended as a medieval version of Popular Mechanics or Fine Homebuilding, for the idea of learning how to do something by reading it in a book is a distinctly modern practice. A tenth-century builder learned his repertory by following the example of his master, not by borrowing a copy of Buzajani’s book from the library and reading the instructions. Buzajani’s book instead should be understood in the context of the literary genre known as adab, the urbane knowledge of “man, his qualities and his passions, the environment in which he lives, and the material and spiritual culture created by him,” which was so important in the Abbasid period.⁷

Visual notation, whether in two or three dimensions (e.g., sketches or plans and models), can be used for at least three distinct purposes. It can serve as a device to facilitate or save an individual’s labor, for he can work out a particular detail or relationship before proceeding with the full-scale cutting or fitting of a complex part or set of parts. An obvious example would be the notes a carpenter makes when measuring the dimensions and sketching the shape of a particular space for which he will prepare cabinets at his shop, or the rough calculations and sketches he might make on the bare plaster walls to work out a particular detail of wooden trim. Visual notation can also serve the entirely different purpose of giving information or instructions to others. An architect can, for example, use systems of visual notation to make designs for a building that others will execute. He may never have seen the site and never go to supervise the work, but he can base his designs on plans of the site and expect that on-site workers will do the job following his instructions. In the first case, the person who encodes and decodes the information is one and the same, and the system of notation can be strictly personal. In the second case, all individuals involved must share the same system of notation, in order that the message encoded by one can be decoded by another. Although I know of no surviving examples of the former type of notation from the medieval Islamic world, I can easily imagine that there was one and that craftsmen worked out particular details of design with whatever drawing or modeling materials were available. A third use of visual notation, particularly drawings and models, is made to show a patron or prospective patron what a completed
project might look like. In this case, which I will not consider further, the patron's pleasure and continuing interest in the project are all that matter.

In searching for the earliest use of notation, the evidence of early Islamic architecture itself, the most valuable source, has largely been ignored. In general, the buildings suggest that there was no universal system of visual notation, although plans must have been used for extremely complex buildings. For example, the vocabulary shared by much of Umayyad architecture is explained, not by the use of standard plans sent from Damascus, the capital, or any other city, but by the relatively restricted area in which much of it is found. The common heritage in greater Syria of late-antique and Byzantine traditions of architecture and its decoration explains the similarity of much Umayyad architecture. Many of the Umayyad chateaux (e.g., Khirbat al-Minya and Qasr al-Hayr West) are square structures measuring some 70 m. (200 cubits?) to a side, although others have walls half (Jabal Says) or twice (Mshatta) as long. It seems hardly plausible to imagine that their evident similarities result from common systems of visual notation, for the dimensions, salient gateway, corner towers, and battlements show them to have been modeled on a standard type of Roman frontier fort. The relatively restricted distances between one site and another allowed artisans or groups of them to move about easily. A team of mosaicists, for example, is thought to have worked in Bethlehem at the Church of the Nativity in the 690's, then in Jerusalem at the Dome of the Rock, and finally in Damascus at the Umayyad Mosque. Similarly, the appearance in Umayyad architecture of "foreign" techniques, such as brick vaulting at Mshatta, can be explained more easily by the use of corvée labor from Mesopotamia or Iran than by the use of verbal or visual systems of notation.

Graphic systems of representation, however, must have been known, for Creswell's analysis of how the plan for the Dome of the Rock was set out, for example, shows that the building was designed graphically. The placement of the supporting elements was determined by inscribing an octagon and two rotated squares within a circle whose diameter corresponded to that of the building, and the elevation was generated from the diameter of the central rotunda. These relationships had to have been worked out graphically before the builders approached the site with strings, pegs, picks, and shovels, but the Dome of the Rock was an unusually elaborate building with intricate correlations between its parts, and one should not extrapolate that all Umayyad buildings needed such sophisticated plans.

The dense cluster of buildings surviving from the ninth and early tenth century in North Africa provides additional evidence for the use of example rather than notational systems. It has long been noted that the Great Mosque of Kairouan in Tunisia (836) served as a model for such later mosques in the region as the Zaytuna, the congregational mosque of Tunis, and the early Fatimid mosque at Mahdiyya. The filiation can be seen in such general features as the parti, the doubling of supports in certain areas of the prayer hall, and the use of stiffening transverse arcades, but there are few, if any, exact parallels among the buildings, suggesting that memory was more important than notation. Further evidence that graphic representation was not widely used may be inferred from analysis of the plans of the mosques in Kairouan and Tunis. Although the extraordinary skewing from the orthogonal is hardly noticeable on site, it is overwhelming on accurate plans. The builders did not require a setting-out of the plan comparable in accuracy to that of the Dome of the Rock, nor would it seem that they needed graphic representations of the buildings they were about to erect. Careful setting-out and right angles, which are noticeably absent from the mosques in Kairouan and Tunis except in the carefully designed domed bays in front of the mihrab, are essential only when building an extremely complex structure with standard-sized materials prepared off the site. When the structure is simple and materials are scarce, one makes do with what one has, and each architectural element is made to fit the others. Many of the elements in the Kairouan and Tunis mosques are spolia from earlier buildings which were fitted together on the site. Any preliminary designs would quickly have become irrelevant as the builders cobbled together the available materials into a building.

Architectural historians often cite the mosque of Ibn Tulun in Cairo as a clear-cut case of how architectural forms were transmitted over great distances, although any discussion of how these ideas were transmitted is left unstated. It is unanimously agreed that the building was "influenced by" one of the congregational mosques at Samarra (848–52 and 861), the Abbasid capital in Iraq, for the mosque of Ibn Tulun and both congregational mosques at Samarra share such features as the open space surrounding the building (Arab. ziyāda), the use of brick piers instead of columns, and the spiral tower opposite the mihrab. The sharp differences in the proportions of the plan — the Cairo mosque is virtually square while the Samarra ones are much longer than they are wide — show that if graphic plans were sent
from Samarra to Cairo, no one was able to read them. Instead, nearly all the similarities between the mosque of Ibn Tulun and its Mesopotamian prototypes could have been (and still are) easily expressed in verbal terms. In contrast, those similarities that are more difficult to express verbally, such as the use of brick piers or beveled-style ornament, can be explained by the physical presence in Egypt of artisans trained in the Mesopotamian manner or of actual examples of that ornament, rather than by the use of systems of visual notation. It is quite preposterous to imagine that drawings of piers or beveled-style ornament were made in the ninth century to instruct artisans unfamiliar with the execution of these features, for there is no evidence elsewhere that appropriately sophisticated conventions of representation existed. Indeed, the relatively short life in Egypt of the Samarra-inspired style and its inability to make a permanent dent on Egyptian architectural design or ornament suggests that its presence in Egypt was tied to particular individuals or workshops rather than to conventions of graphic representation.

Although modern historians unanimously agree that the mosque of Ibn Tulun was modeled on one of the congregational mosques at Samarra, medieval Egyptian sources explain its deviation from the norm of Egyptian Islamic architecture in other ways. According to one source, Ahmad b. Tulun dreamt that God appeared in a neighboring oratory but would not enter the mosque itself. Ahmad asked the interpreters of dreams what that meant, and they answered, "You must demolish the constructions around the mosque and let it stand alone." So he tore down the surrounding buildings leaving the mosque isolated, thereby explaining the origin of the ziyadas. Al-Quda'i (d. 1062) explained the use of brick piers as a precaution against fire or flood, while al-Qalqashandi (ca. 1412) said that it represented an attempt to eliminate from mosques columns that had been tainted by their prior use in Christian buildings. Ya'qubi explained the origins of the minaret's form with an anecdote: during construction the mosque's builders asked the patron, "What model shall we follow when we build the manâra?" The governor, who usually never let his mind wander during business, found himself toying with a piece of paper. To cover his apparent inattention, he said, "Build the manâra like this." And so they did, giving the tower its distinctive spiral shape. 11 From all these stories it seems quite clear that the Egyptians had no idea of what to make of Ibn Tulun's new mosque. Few, if any, of them had seen Samarra's mosques, and no system of visual representation of architecture seems to have been available to allow such a distant building to enter the Egyptian visual vocabulary.

In addition to example, words appear to have been the other major means of transmitting architectural ideas in the medieval Islamic world. Had architectural ideas been transmitted only by example, there would have been little change from the buildings of one generation to the next, and there would have been little relationship between the buildings of one region and another. The importance of words is clearly substantiated by the formal similarities that existed among early congregational mosques, despite great differences in plan and specific detail. The Great Mosque of Damascus and the Mosque of the Prophet in Medina, for example, were built at roughly the same time by the same patron. Although they both had extensive decoration in glass mosaic, their visual similarities ended there. The Damascus mosque is much wider than it is deep, and has a monumental prayer hall of three double-height aisles transversed by a massive gabled and domed space. The Medina mosque, in its Umayyad phase, seems to have been a rather square, comparatively low, hypostyle structure with little differentiation of covering, except in the areas leading to and near the mihrab. Nevertheless, one can easily define the type that includes all Umayyad congregational mosques, for they share such features as an open court surrounded by arcades, a niche-like mihrab in the middle of the qibla wall, and a minbar placed to the right of the mihrab. The ease with which one can verbally express the relationships between the parts of these buildings in contrast to the difficulty of establishing visual similarities among them is strong evidence for the use of words, rather than images or memory, to express and transmit the essential features of some buildings in the Umayyad period.

Verbal transmission and example were still the norm in the ninth century, to judge from the circumstances surrounding the introduction of the single tower into the mosque parti. 12 The mosques at Siraf in Iran (ca. 815–25), Kairouan, and Samarra are the first surviving to have had a large tower located opposite the mihrab, but otherwise all similarity ends there, for the form and technique of construction of each tower (and mosque) depended entirely on local tradition. The Siraf tower had a square stone base and probably a round shaft; the Kairouan tower, which is built of stone, has three cubic stories, of which the lowest and tallest has battered walls; and the Samarra towers, both built of brick, are helicoidal spirals. While the location of the towers can be explained by verbal transmission, the distinctive forms
and techniques again show that within regions architectural ideas were transmitted by example, although even example was less than a perfect means of transmission. The builders of the tower of the Great Mosque of Kairouan, for instance, undoubtedly copied the form from the Roman lighthouse that still stood at nearby Salakia (ancient Sullecithum), but the extraordinary and unnecessary thickness of the lower walls of the Kairouan tower shows that the builders had no previous experience building towers and that the tradition of building towers in North Africa had largely expired before the ninth century. Although the ninth-century builders had the example of the Roman tower before them, the distinct break in the craft tradition led to a technically clumsy, if monumental, solution.

The possible longevity of a model in the Islamic world is shown by the Great Mosque of Damascus, which continued to provide an example for other buildings for centuries after it was built. Its distinctive broad and shallow proportions, three gabled aisles parallel to the qibla wall, axial nave leading from the courtyard to the mihrab, and dome surmounting the nave appear in a group of mosques in Syria and the Jazira. The earliest may have been the congregational mosque of Aleppo, erected about 715, which is known to have been decorated with marbles and mosaics. These rivaled those of Damascus, and the original plan may have been a reduced version of that of Damascus. The ruins of the Great Mosque of Harran, which Creswell attributed to the Umayyad caliph Marwan II (r. 744–50), had a rectangular court surrounded by arcades and a prayer hall of three aisles parallel to the qibla wall. The most famous “copy” of the Damascus mosque is the Ulu Cami (Great Mosque) of Diyarbekir (formerly Amida), in its present state largely a work of the eleventh and twelfth centuries. Nasir-i Khusraw, the Persian traveler and Fatimid spy, saw the mosque in 1046, but his description is so totally unlike the present building, which is notable for its triple-aisled prayer hall with a gabled nave, that it must be the product of a later campaign. A floriated Kufic inscription in the mosque states that the Seljuq sultan Malikshah ordered the work, probably in 484 (1091–92). He seems to have had the Damascus mosque, whose dome his vizier Abu Nasr Ahmad ibn Fadl had restored in 1082–83, copied at Diyarbekir on a smaller and simpler scale. The Artuqid mosques at Silvan, Kiziltepe, and Mardin in northern Mesopotamia may also belong to the group, although the relationship to the Great Mosque of Damascus is less direct.

That the prototype was still viable six centuries after it was built is shown by the Isa Bey Mosque of Selcuk, near Ephesus (1374), which was built for the amir of Aydin by the architect Ali b. Mushaimish al-Dimishqi (of Damascus). It has a rectangular courtyard with colonnaded porticoes and monumental gateways on three sides and a broad rectangular prayer hall of two aisles parallel to the qibla wall with a nave of two domes on pendentives. The location of all of these mosques within Syria, the Jazira, and Anatolia suggests that example was the primary means of transmission and the builders had seen either the mosque of Damascus itself or one of its copies and abstracted the principal elements of its design: court, bays, nave, dome. Although it would be tempting to believe that the Isa Bey mosque, the example located furthest from Damascus, was the product of visual systems of notation which are known to have been used by the fourteenth century, the name of the architect indicates that he (or his family) was from Damascus and undoubtedly familiar with the prototype.

The example of the Great Mosque of Damascus was also important for patrons. The example of Malikshah’s transformation of the mosque of Diyarbekir has already been noted, but it is not generally appreciated that the Damascene precedent also provided the impetus for Malikshah’s transformation of the Friday mosque at Isfahan, his capital, from an Abbassid hypostyle structure into a mosque with a large dome in front of the mihrab. The south dome in Isfahan’s Friday mosque is inscribed with Malikshah’s titles but no date; Sheila Blair’s study of Malikshah’s titulature allowed her to date the renovation to the winter of 1086–87. She noted that the insertion of a large dome into the otherwise hypostyle mosque was immediately preceded by Malikshah’s visit in the autumn of 1086 to Damascus, where he must have inspected the dome his vizier had ordered some years earlier. One may imagine that Malikshah returned to Isfahan and ordered local builders to erect a dome equivalent in size to that of Damascus. The builders, having never seen the Damascus dome, naturally turned to the tradition of dome construction in central Iran, represented, for example, by the Duwazdah Imam at Yazd (1036). Indeed, comparison of the exterior dimensions of the domes (Damascus: 21.66 m.; Isfahan: 21.7 m.) underscores the close relationship between the two structures. That the Isfahan dome looked nothing like the Damascus one was irrelevant; it only mattered that it was a dome of the appropriate size. The transformed Isfahan mosque then provided a model for a series of dome chambers in other central Iranian mosques, such as Qazwin, Ardistan, and Zawara.
commodities bought in the Cairo bazaar were taken home wrapped in paper. His enthusiasm for everything Egyptian and Fatimid should be tempered with a degree of skepticism; his image of a paper society can be compared to the habit of saving paper scraps for repeated reuse: a piece dated April 26, 987, for example, was reinscribed on December 21, 1085. Nevertheless, over the long term, paper became increasingly available and affordable. To my knowledge, the first large-format paper books appear in the fourteenth century. Just as the emergence of the printed book, or now the computer, has had an enormous impact on modern life, the increased availability of paper transformed the medieval Islamic world into a paper society, and this new society meant that people worked and thought in new and different ways. In the realm of architecture, the increased availability of paper would have encouraged the use of personal notation for sketches and plans; the ease with which paper could be sent from one place to another would have fostered the development of collective systems of notation and the transfer of visual images over long distances. The effect of this change on medieval perception is less easy to determine. Many of us know the extraordinary feats of memory young children or other illiterates can perform; it should not surprise us that “visual illiterates” may have been capable of equivalent feats of mental estimation, calculation, and visualization that modern “visual” man deems virtually impossible. Our reliance on notational systems has largely obviated the need for these mental feats and ensured similar, if not identical, performances over a wide space and long time, practices that our society values highly. The absence of notational systems in the early Islamic period, for example, meant that no single Abbasid style of architecture would be followed from the Atlantic to Central Asia, while the undoubted existence of such systems in later times guaranteed the impressive uniformity — at least in pre-modern terms — of Timurid and Ottoman architecture over a large empire. Finally, the emergence and use of notational systems brought about a further professionalization of architecture, for the ability to draw and read plans is a learned and complex skill, quite different from that required to make buildings stand up.

Richmond, New Hampshire

NOTES

1. See Michael Baxandall, *Patterns of Intention* (New Haven, 1985), pp. 58–62, where he remarked that the loose use of the word “influence” unintentionally confuses the roles of the agent and patient.

4. For the possible use of plans in the year 1101–2, see Sheila S. Blair, *The Monumental Inscriptions of Iran and Transoxiana* (Leiden, 1991), pp. 188–89.

6. Arabic copies include one made in the fifteenth century for the library of Ulugh Beg in Samarkand (Istanbul, Aya Sofya ms. 2753) and one in Milan, Ambrosiana, ar. 68. Persian translations include manuscripts in Paris (Bibliothèque Nationale, ms. persane 169) and Tehran (University Library ms. 2876), see Sezgin, *Geschichte*, p. 524.

10. A highly inaccurate plan of the Zaytuna mosque in Tunis has been reprinted in K. A. C. Creswell, *A Short Account of Early Muslim Architecture*, revised and supplemented by James W. Allan (Aldershot, 1980), fig. 250, taken from EMA 2, fig. 245; compare with Lucien Colvin, *Essai sur l’architecture religieuse musulmane*, 3 (Paris, 1974), fig. 64.

11. Indeed, a paper twist gives the helicoidal spiral form of the Samarra towers, with ramps of increasing slope.

the mihrab opening. These features are new to Spanish Umayyad architecture and have no local precedent.

The historian Ibn Ṣidhārī states that the caliph al-Hakam II (r. 961–76) sent an ambassador to the Byzantine emperor requesting him to send a workman to decorate the mosque. The Byzantine emperor complied, and the ambassador returned with a master-craftsman and 320 qintār (approximately 16,000 kg.) of mosaic cubes as a gift from the emperor. He completed the mosaics on the dome in front of the mihrab in June 965. Ibn Ṣidhārī is explicit about the caliph’s motives: he wished to imitate the Umayyad caliph al-Walīd b. ʿAbd al-Malik who, early in the eighth century, had built the Great Mosque of Damascus and decorated it with mosaics. Not only did al-Hakam identify with his Syrian forebears and wish his mosque to emulate theirs, but he also wished to get his mosaics and mosaicists from the same source, which in the tenth century was believed to have been the Byzantines. Whether Byzantine workmen actually decorated the mosque of Damascus is immaterial; most people in the medieval Islamic world believed that they had, and that belief is essential for understanding the mosaics of the mosque of Córdoba.

That the Spanish Umayyads consciously recapitulated their real or imagined Umayyad past in Syria suggests that other features of the mosque of Córdoba may have been modeled on the mosque of Damascus. The three ribbed domes over the maqṣūra, which have no local precedent, may be an attempt to realize a verbal description of the three domes of the Damascus mosque. While the prototype in Damascus had three domes arranged in a line in the direction of the qibla, a misunderstanding in the verbal transmission would allow for the three domes at Córdoba arranged perpendicular to the qibla. Although no description survives of the earliest domes at Damascus, Ibn Jubayr’s description of a later dome, which may have been modeled on an earlier one, states that it was round like a sphere and strengthened with stout wooden ribs bound with iron. The ribs curved over the dome and met at the summit in a round circle of wood. From the interior, the inner dome was inlaid with carved, colored, and beautifully gilded wooden panels.

Might not the wonderful ribbed domes of the Cordoba mosque be an attempt to give three-dimensional reality to something known only from enthusiastic descriptions?

The unusually rich textual sources for the mosques of Damascus and Córdoba allow one to imagine the transmission of designs in early Islamic architecture by verbal means, but the overall scarcity of such sources means that other examples are difficult to find. Nevertheless, this single example indicates that medieval viewers perceived their buildings quite differently from the way we do today, and scattered details in other sources reinforce this notion. For example, an inscription in the Great Mosque of Taza, Morocco, states that the Marinid sultan Abu Yaḥyā Yusuf (r. 1286–1307) expanded the mosque by four balāt. Modern perceptions would say that he extended each of the mosque’s nine aisles, which run perpendicular to the qibla wall, by four bays beyond the qibla wall, but the terminology of the inscription shows that the contemporary audience measured the spatial transformation in depth. It had no concern for the direction in which the bays ran or the numbers of bays that were extended, both features which are far more important when seen on a two-dimensional plan than noticed inside the mosque. The difference in the way architecture is perceived, from one based on the experience of three-dimensional space to one grounded in the use of such abstract concepts as plans, sections, and elevations, is enormous and important. It can be dated somewhere about the year 1250, probably earlier in the eastern Islamic lands and later in the west; it seems to have been due to the emergence and widespread use of notational systems, which were themselves probably due to the increased availability of paper in the Islamic world.

The introduction of paper to the Islamic world is traditionally said to be a consequence of the battle of Atlakh near Talas in 751, when Chinese prisoners of war taught the art to Muslims in Central Asia. Whether or not the story is true, paper soon began to replace papyrus and parchment, the two flexible writing supports of antiquity. The first surviving book written on paper is a fragmentary copy of Abu ʿUbayd’s work on unusual terms in the traditions of the Prophet (dated 866–67); the first surviving Qurʾānic manuscript on paper is nearly a century later (971–72). Paper was used not only for books but also for bank drafts, letters, bills, and wrapping; sheets of paper were glued together to make pasteboard for book covers. Although paper was ubiquitous and important, it was not cheap, at least at first. In the tenth century, for example, 125 sheets cost 65 dinars, over three times the monthly income sufficient for a lower-middle-class family. Small pieces of paper were used for important purposes: the typical order of payment from the Cairo Geniza is half the size of a modern check (i.e., less than 7.5 × 9 cm.), although large sheets were pasted together for the decrees of the caliph or his close associates, which might measure from 21 to 45 cm. broad and up to 10 m. long. Nasir-i Khusraw wrote incredulously that
YASSER TABBA

SURVIVALS AND ARCHAISMS IN THE ARCHITECTURE OF
NORTHERN SYRIA, CA. 1080–CA. 1150

For Creswell, chronology was “the spinal column of history,” a dogma that permeated his voluminous work and influenced the scholarship of many of his successors. Ultimately based on archaeological documentation, this positivist methodology was designed to create order where disorder had been perceived and to equip a new field with a scientific foundation. Typically, his scheme attempted to fit the monuments — or particular phases of them — into a neat chronological sequence and to provide each with a historical background, an objective description, and a large number of comparisons intended to ascertain its date or determine the various influences impinging upon it. The field of Islamic architecture as we know it today grew out of this artificial scheme, rarely departing from its rigid progression and attempting instead to fit all new findings within its pre-established categories.

But the apparent neutrality and objectivity of Creswell’s chronological evolution are deceiving, for they implicitly endorse a false sense of continuity across the various epochs and geographic regions of early and medieval Islamic architecture. Recalling Riegl’s outmoded concept of Kunstwollen with its central belief in continuous and autonomous evolution of forms and motifs, this method has led to at least two unfortunate tendencies in the field. The first is to assume a rather monolithic picture of Middle Eastern Islamic architecture, in which forms and styles are subject to gradual change and continuous development. The second is to focus scholarly interest on a “central style” of Islamic architecture to the neglect or misunderstanding of those periods which do not directly stem from or contribute to it. On the whole, these “intrusive traditions” were either ignored or artificially brought into accord with the dominant tradition. Also contributing to these centralizing tendencies were non-historical essentialist views — reflecting the field’s earlier association with Orientalism — which, though totally opposed to positivist methodology, were easily and unconsciously incorporated into the discourse.

One could instead view the development and increasing variation of Islamic architecture between ca. 1000 and ca. 1350 at least in part as a series of discontinuous events brought about by geographic dislocation, dynastic change, racial intrusions, sectarian differences, and other factors. With the possible exception of Cairo, which had a uniquely continuous architectural history in the Middle East, Islamic cities — the centers of architectural patronage — prospered and ebbed in fairly rapid succession: one day at the vanguard of Islamic architecture, the next a forgotten backwater. By accepting, instead of ignoring, these basic discontinuities, we may arrive at a different — perhaps less dogmatic and pre-determined — view of Islamic architecture. In particular, the flexibility and non-essentialist nature of this approach might more fairly and accurately address and assess those periods which seem to stand apart from the main tradition.

The buildings of northern Syria between the late eleventh and the middle of the twelfth century represent perhaps one of the most intrusive phases of medieval Islamic architecture. Their singularity, in their reliance on ashlar masonry and archaizing motifs, has intrigued several writers, including Herzfeld in 1921 and later, Creswell in 1952, Grabar in 1965 and later, and Rogers in 1971, all of whom characterized it as a survival or revival of classical antiquity. Emphasizing its most non-Islamic features and comparing it with contemporary Persian architecture, Herzfeld saw it as part of an “uninterrupted classical tradition.” Most recently, the problem has been discussed by myself, in 1982 and later, and by Allen, who wrote a book-length study on it in which he proposed to explain it as a conscious and purposeful revival of classical antiquity.

In this paper the archaizing architecture of northern Syria is regarded first and foremost as a consequence of the region’s relative isolation and insignificant architectural activity between the eighth and the eleventh centuries. In addition to dealing with the stylistic and iconographic aspects of this architecture, the paper will address the much more basic problem of the use of stone, a local material which had been supplanted else-

18. Étienne Combe et al., Répertoire chronologique d’épigraphie arabe (Cairo, 1931-), no. 2792.

19. The mosque at Silvan (Mayafarqin, ca. 1152-57) has a large dome in front of the mihrab; that of Kiziltere (Dunayır, 1204) has a large rectangular court and a triple ailed hall with a great dome in the center over the mihrab; the mosque at Mar- din (1160’s or 1170’s) has a rectangular plan, three aisles parallel to the qibla wall and a dome in front of the mihrab. See Tom Sinclair, “Early Artaqid Mosque Architecture,” The Art of Syria and the Jazira, ed. Julian Raby (Oxford, 1985), pp. 49–67.

21. This quantification of the essential qualities of a building is reminiscent of copies in Western medieval architecture, where, for example, copies of the Holy Sepulchre needed only to have an appropriate number or similar distribution of supports. See Richard Krautheimer, “Introduction to an Iconography of Mediaeval Architecture,” Journal of the Warburg and Courtauld Institutes 5 (1942): 1–53. The medieval copies of St. Peter’s in Rome were perhaps more exact because the model was far more accessible, and therefore more familiar, than the Holy Sepulchre in far-off Jerusalem ever could have been. See Richard Krautheimer, “The Carolingian Revival of Early Christian Architecture,” Art Bulletin 24 (1942).

23. See, for example, the list compiled by Creswell, EMA, I:205, and the texts quoted in Guy Le Strange, Palestine under the Moslems (rept. Beirut, 1965), pp. 224–75.

24. He says it was “built on marble columns in two tiers, the lower tier of large columns, the upper of small ones. Elsewhere every city and tree in the world are depicted in gold, green, and yellow mosaic. In the qibla of the mosque is a dome known as the Dome of the Eagle. Nothing in Damascus is higher than it, nor is there a more beautiful view from anywhere else.” The original text of al-Jahiz is no longer extant, but parts of it are quoted by Ya‘qūb, Muḥammad al-Bundānī, ed. F. Wüstenfeld, 6 vols. (Leipzig, 1866-73), 2:203.

25. Barbara Finster, “Die Mosaike der umayyadischen Moschee von Damaskus,” Kunst des Orient 7 (1970-71): 119, and Mas‘ūdī’s Mushaf al-Dhakhāb (1943), quoted in Guy Le Strange, Palestine under the Moslems, pp. 234–35. Mas‘ūdī states that the palace of Jarjūn, a mythical pre-Islamic figure, which had marble and alabaster columns and gates of brass, was incorporated in the Great Mosque.

26. “Now, as to the Mosque at Damascus, there is none to equal it in all Islam, and on none other has so much been spent ... [history of the site from the Sabaeans, Greeks, Jews, Christians to Islam]. When it came to the days of the Khalif al-Walid, the son of ‘Abd al Malik, he built [the Mosque], laying down the pavement in marbles, facing the walls with variegated marble, and setting up marble pillars of various colours; and the keystones [of the arches] and the capitals of the columns he overlaid with gold. The Mihrāb also was gilt everywhere, and set with precious stones, while the ceiling was of wooden beams likewise gilt. All round the ceiling ran an inscription on a gold background, and this continued round all the four walls of the Mosque ... [here follows an account of the cost of the building]” (Le Strange, Palestine, p. 236).

28. Ibid., pp. 274-75.

29. See, for example, M. M. Amin and Laila A. Ibrahim, Architectual Terms in Mamluk Documents (Cairo, 1990).

33. Ibid., I:168-69.

34. The conscious imitation of Damascus is also seen in the story, which cannot be traced any earlier than the tenth century, that the original eighth-century mosque was partitioned from a church of St. Vincent, just as the Damascus mosque was partitioned from the church of St. John. No Christian sources mention a church of that name in Cordoba; see Bloom, “Revival,” pp. 39.

36. The illogical extension of this practice into modern times can be seen in Christian Ewert and Jens-Peter Wishak, Forschungen zur almohadischen Moschee I: Vorstufen (Mainz, 1981), p. 127, which states that the concentric octagons in the plan of the Dome of the Rock were repeatedly copied in the columns of the Great Mosque of Kairouan, although these octagons are apparent only in highly schematized plans of the mosque’s columns and capitals.

40. Ibid., I:241.

42. Goitein, Mediterranean Society, I:7 and 334.

43. E.g., a thirty-part manuscript of the Qur’an measuring 50× 35 cm., which was copied in Baghdad by Ahmad ibn al-Suhrawardi al-Bakri between 1302 and 1308. Perhaps the most famous is another thirty-part manuscript of the Qur’an, measuring 72×50 cm., which was also copied at Baghdad and later bequeathed by the Mongol sultan Uljaytu to his mausoleum at Sultaniyā. Several other manuscripts of the Qur’an copied probably in Cairo in the middle of the fourteenth century measure approximately 60× 40 cm. For all of these manuscripts, see David James, Qur’ans of the Mamluks (New York, 1988), cat. nos. 39, 40, 13 (dated 1329), 15 (1331), 16 (1332), 17 (1334), 19, 21, 22, 23, 24.