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SERGEI CHMELNIZKI]J

METHODS OF CONSTRUCTING GEOMETRIC
ORNAMENTAL SYSTEMS IN THE GUPOLA OF THE
ALHAMBRA

In 1981 1 was given the task of measuring and drawing
the fourteenth-century wooden cupola from the Alham-
bra which is preserved in the Museum of Islamic Art
in West Berlin. While doing this work, I noted three
geometric ornaments that are characteristic of Islamic
art wherever it is found (fig. 1). The first covers the
inner surface of the sixteen sides of the cupola; the
second is used to decorate the four carved triangles that
fill the octagonal base of the cupola up to a full quad-
rant. The third is represented by the projection of an

1. Three characteristic geometric ornaments from the wooden cupola
of the Alharabra, 14th century.

inner stalactite cornice on a horizontal plane; it is not
visible except by drawing its theoretical graphic
representation.

Geormetric ornament, which is widespread in Islamic
art, was not drawn free hand. It was designed with the
help of a number of geometric methods which were not
always exact but which allowed the generation of a
series of variants. The most popular type of ornament,
the girth (Persian for “‘knot’’) is represented by a design
with many symmetrical axes consisting of star-shaped
knots surrounded by geometric figures of various kinds.
Theoretically a girth can be extended infinitely in all
directions by repeating its smallest element or module
in various rotations.

The ornament (fig. 2) on the interior apex of the
cupola is based on the ginh. Geometrical analysis
reveals its invisible foundation, which proves to be a
grid of square cells in which eight-pointed stars
(“‘knots’’) were inserted. Each star seems to consist of
two squares, turned at 45-degree angles to each other.
The size of these squares equals the size of the square
cells of the grid. Almost all the figures of the design in
the intervals are these same stars, only this time trun-
cated since they have lost part of their rays.

The master craftsmen did not regard the rectangle as
an acceptable form for surface ornamentation, but pre-
ferred a long, narrow trapezoid. To accommodate it
they transformed the design of the girth by giving it a
beginning and an end, which in principle an ideal girih
would not have. The essential regularity of the design
was preserved, but under the lowest star a wide base
was extended horizontally, and at the top elements
were transformed to create the impression of a dynamic
upward movement. In this way, the design, far from
being neutral in relation to the architectural form it
covers and decorates, facilitates the expression of its
plastic and dynamic qualities or architectonics. This
deliberate complication of the girth structure suggests
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2. The ornament on the interior apex of the Alhambra cupola.

that the triangular module that the analysis revealed
only functions in the lower central part of the design,
where the star-shaped knots form the corners of a large,
diagonally placed square. The rest of the design varia-
tions are quite regular, as can be seen in figure 3.
The rhythmic “‘orchestration’’ of the girzh is reminis-
cent of the displacements of regular geometric systems
introduced into art by “‘Op’’ artist Vasarelli six hun-
dred years later. The most basic design, girths with
octagonal stars serving as knot centers, has been widely

\

3. Drawing showing structure of the girik.
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used in Islamic art for a long time. It was an interna-
tional motif, the regional roots of which (like the roots
of the whole art of geometrical ornamentation) are
impossible to determine. One can only discuss the type,
since apparently no exact model of our girth exists; at
least T have not been able to find one. Even in the
Alhambra itself, with its infinte wealth of ornamental
decoration, although quite close parallels to this design
can be found-—for example in the Hall of the
Ambassadors—the parallels are not exact. This
exclusiveness 1s not typical, however; many girihs were
very popular and are duplicated with great exactness in
places thousands of kilometers apart. The unusualness
of this one can be explained by the fact that the master
craftsmen subordinated the changing structure of the
ornament to the form of the surface being decorated.

The design decorating the corner triangles of the
cupola’s square base is of a different character. This is
also in essence a girih, whose center forms a large eight-
pointed star, in which a small eight-cornered cupola,
the hauzak, is inserted. The points of the star cross over
into the small stars, which are interrupted by the
borders of the triangular ornamented field. Together
with the geometric elements lying in between, they
form the ornamental frame of the central octagonal
cupola. This frame is continued down the sides of the
triangle to its acute angles and then ends with small
truncated stars.

In spite of its complexity, the design in figure 4 gives
the impression of organized harmony, first of all
because it is constructed on a system of axes. The prin-
ciple axes divide the three corners of the decorative
plane in half; their intersection {orms the center of the
main octagon. This design can only conditionally be
called a girih; it is subordinated to the triangular form,
which it is intended to decorate, and cannot go beyond
those limits without altering its structure. Thus in this
case the subordination to the general form of the field
has a much more organic character than in the previous
where the master craftsman transformed the
geometric skeleton of the ornament more or less at will,
Here there are no such transformations, and elements
which do not stem organically from the basic ornamen-
tal plan are minimally attested (for example, the small
stars could be squares, as is shown in the analytical
drawing).

case,

It would be comparatively easy to construct this
design, gradually joining one of its elements to another
until all of them lie on the corresponding axes. How-
ever the master craftsman making this decoration

would not have had this possibility. He would have had
to insert the ornament into the size of the triangle given
to him. In other words, he had to have a method for
constructing the geometric basis of the design, to have
some kind of plan which would allow him to go from
the general to the specific. According to that plan, the
size of the triangle itself would have to determine the
size and placement of the design’s basic components.
Geometric analysis revealed what the method for doing
this was. The nature of this ornament’s construction
or, more exactly, its geometric framework, can be seen
in figure 4.

In figure 5, the isosceles, right-angled triangle O1XY
is divided in half by the bisector 001. Two other angles
are also divided in half by the bisectors XX1 and YY1.
The point of intersection of the three bisectors deter-
mines the center of the design. From points X and Y
we shift the dimensions AX and A:Ys on the sides,
which are equal halves of the hypotenuse. Drawing the
lines AB and A1B1 parallel to the sides, we obtain the
main axes of the large central star. We join the points
A and A1 with a straight line parallel to the hypotenuse.
From the points A and A1 we draw the curves having
the radius AO1 and A:O:1 further to their intersection
with AA: then further to the intersection with the sides
at the points E and G. Through two points lying on the
intersection of AA1 with both curves, we draw a curve
from O to its intersection with the sides at the points C
and D. The lines CCit and DD1, drawn from these
points parallel to the small bisector, define two sides of
the central star and the octagon lying within it. The
lines EE1 and GG1, drawn parallel to the sides, define
two angles and partially the sides of the square framing
of the center. The intersection of the axes A:B: with
CC1 and the axes AB with DD:1 define two points,
through which the line NN1 extends parallel to the
hypotenuse. The lines PP1 and QQ1, parallel to the
sides, are drawn through the points that result from the
intersection of the bisectors XX and YY1 with CCi
and DD1, as well as through the points which are at the
intersection of these bisectors with the already located
line NNi. These three lines—NNi, PPi and QOQ)s,
outline the ribbons of ornament going around the inner
sides of the triangle, and define three more sides of the
central star. The lines HH1 and FF1 in defining still two
more sides of the star are drawn through the intersec-
tion points of the bisectors X X1 and YY1 with CC: and
DDt. Finally, the last line forming the central star,
RR1, is defined through the points located at the
intersections of CC1 and DDt with the axes AB and
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4. Design decorating the corner triangles of the cupola’s square base.

AiBr. The lines B1Y: and BXi running symmetrically
to EE1 and GG, are drawn through the points of
intersection of the latter with the bisectors XX1 and
YY1 It is possible to draw them by joining the already
mentioned points Bt and Y1, as well as B and Xi. The

short lines II:, LL:, KKi and MM remain, which
form (together with the lines that run parallel to the
sides of the triangle) angular truncated stars. Their
position is determined by the segments Cil: and
D1M:1, which are shifted from the points CiD: on the
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5. Geometric analysis of decoration in the corner traingle.

hypotenuse and are equal to the known segment CiDs,
that is, to a side of the central square. The location of
the points I and K on the sides is determined by the
curves which are drawn from point O with a radius

equal to OC (OD).

Analyzing the geometric plan’s construction is
undoubtedly a much easier task than creating, invent-
ing, and composing it must have been. Nowadays it is
difficult to imagine the specific geometric thought pro-
cesses of the old Islamic master craftsmen which
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6. Drawing representing the projection of the stalactite-like cornice structure on a horizontal plane.

allowed them to construct, first in their imagination,
then in reality, similar ornamental puzzles with their
varied and complex regularities.

One such regularity in figure 4 is that the length of
the right-angled elements within the frame—L:, B,
BM:, GK, and El—is equal to the diagonals of the
adjacent squares, in which small stars are inserted.
That also attests to the particularly profound
knowledge of applied geometry in the fourteenth cen-
tury which is difficult to imagine at the end of the
twentleth.

All these observations also apply to the geometric
system revealed by measuring the cornice of the cupola,
which represents the projection of a stalactite-like cor-
nice structure on a horizontal plane. Each part of the
cornice decorating one of the sixteen edges of the
cupola consists of three stalactite modules with a com-
plicated form which rest on miniature columns and,

when joined together, form two full arcs of scalloped
forms covered with stalactites and two half-arcs at the
corners. The complicated structure of this plastic form
can be seen in figure 5.

Miniature arches and arcs, each suspended over the
next in stages, are turned into a combination of
geometric figures, rectangles, and triangles in the
horizontal projection that together forms its own
geometric design (figure 6). In this case, the design had
a basic significance: it served as the pattern by which
the master craftsman carved the details of the cornice
out of wood and the installation plan that allowed them
to join the details correctly into a single plastic whole.
In creating or copying this complex structure, the
master craftsman used strictly determined methods,
which assured a harmonious interconnection and
indivisibility of all its elements.

As in the previous case, the master craftsman estab-
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7. Geometry of the stalactite cornice structure.

lished the basic measurement. Here, it is the width set
for the cornice, that is, the distance the cornice pro-
jected from the wall, that served that function. We
begin the reconstruction (fig. 7) by drawing the
transverse axis OO1, which corresponds on the facade
to the vertical axis of the stalactite arch and lies in the
center between two small columns. We assume that
point O lies on the wall, that is on the interior surface
of the cornice, and point O on the furthest protruding
part of the upper surface. From O1, we draw two lines
at 45° angles to the intersection, with the upper lines
at points A and B. From the center O1 we draw a curve
in a half-circle with the radius OsO to the intersection
with the lower wall line, then draw two tangents to this
curve at a 45° angle—CCi and DD1. From the points
C and D we drop the perpendiculars CI and DI1 to the
intersections with O1A and O1B, which results in the
points I and It joined with a straight line. From the
" points I and It we draw two lines at a 45° angle: one
upwards to the junction with the axis OOs, and the
other downwards to the intersection with the lower
edge at the points E1 and Fi. From these points we form
the perpendiculars EE1 and FF1, the segments of which

EiK and FiK: (up to the intersection with CCt and

DD1) define the corresponding elements of the projec-
tion of the stalactites. These segments are equal to CI
and DIi.

When the curves with the radius EI and Fli are
drawn from the centers E and F, we find the points G
and H at the upper edge. The perpendiculars GGt and
HH: that are dropped from them form the axes of the
small columns and the elements which rest on them.
These axes border on the continually repeating parts of
the cornice. The space from these axes to the perpen-
diculars CiM and DiM: formed from the points GiI
defines half the width of the modules, which rest on the

small columns. The segments MK and M:Ki, which
are drawn from the points K and K1, define the length
of these modules in the basic plan (their extension) and
form, together with the diagonals EiM and FiMu, the
stalactite elements of the cornice, which are inserted
into the square in the plan. When we join the already
known points, we get the segments AM and BM:z,
which close the structure of the rectangles AIE:M and
BIiFiM1 and complete the construction of the repetitive
portion of the cornice.

The stalactite cornice, which looks so complex in the
facade, in the plan is reduced to a combination of sim-
ple geometric figures: squares which are diagonally
divided in two, and rectangles into which halves of the
squares are set. All the squares are equal in size, and
in the rectangles one side is equal to the side of the
square, and the other is equal to its diagonal. The inter-
relation of proportions ensures a harmonious propor-
tionality of all stalactite structures of the cornice,
whereby the figures in the plan which have the forms
of triangles and rectangles with a corner cut out of one
side in reality depict small arches of stalactite cells.

With the help of analogical methods, all the stalactite
systems were created not only for cornices, but for
covering niches, cupolas and arches, which were
popular in Islamic architecture. The principle of the
geometric basis of stalactite structures (at times
unbelievably complicated) is the same everywhere it
was used—in Spain, Egypt, Iran, and India. Whatever
its degree of complexity it yields to geometric analysis.
However, the art of the creation, or “‘composition,”” of
such structures presupposing a unique ‘‘geometric
imagination’’ has probably been lost forever.

West Berlin
(translated from the Russian)



