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ABSTRACT

It is shown that the quantum mechanics is capable of describing processes which
have all the aspects of certain chemical reactions. It turns out that a system may
change from one configuration to another when a quantum level of the one configura-
tion has the same energy as a quantum level of the other. Among such reactions men-
tion is made and some discussion given of the large classes of molecular rearrangements,
and decompositions, including radioactive disintegration. The dependence on pressure
and temperature is slightly discussed and it is indicated that the present theory quite
explains the necessity of the old “activation hypothesis” of Arrhenius. The old no-
tions should, however, be modified to take into account that it is not sufficient to
have at least the “activation energy” but the molecule must be in a particular state
to react. Moreover when there are several “activated” states the rate of reaction
from different ones may be very different indeed. Insight is gained into the nature
of certain types of catalytic action including special wall catalyses. Some features of
photochemical reactions are made clear by the theory.

HE quantum mechanics have been shown? capable of dealing with very

general types of transition problems which were outside the scope of
the old quantum theory. The methods developed have been used® in a
great variety of important applications with such marked success that it
may be hoped that any physical phenomenon will be susceptible to the
same treatment.

With this optimistic point of view the problem of chemical change is
approached. It is closely related to the problems already discussed and its
importance justifies any serious effort even though much is left to be desired.

The treatment of the present article is not the only one possible but it
has the advantage that it can be discussed in familiar chemical and mechani-
cal terms. The chief result of this first paper is that it gives a plausible
picture of a certain kind of chemical change. The reason for an “activation
hypothesis” appears clearly but it seems that modifications are necessary
in the form which this hypothesis has taken up to the present. It will be
shown that reaction takes place not when the energy content of a molecule
exceeds a certain critical value out rather when a molecule is in a particular
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state whose energy is equal to that of some other physically distinguishable
state. The chance that the change will take place depends of course on the
interaction between parts of the system and this interaction is dependent
not only on the forces involved but most essentially on the distances in-
volved. For example, in the reaction H+4 Cl,—~HCI1+Cl, the chlorine mole-
cule might well have too much energy to favor the reaction. The energy
required will at no stage be enough to separate the two chlorine atoms.
When the molecule is in the right state the chance that a hydrogen atom
remove one chlorine to form hydrochloric acid will go down exponentially
with the distance between the chlorine molecule and the hydrogen atom.

At present it seems that these same features characterize practically
all types of chemical reaction, and what is especially interesting, they may
also govern the heretofore mysterious field of catalysis.

I. INTRODUCTION

Since the “activation hypothesis” of Arrhenius no important advance
has been made in the understanding of the nature of chemical reaction.
Arrhenius designed the hypothesis to interpret the most striking fact of
chemical reactions, namely, their enormous temperature coefficient. The
assumption is that only molecules having more energy than the average
(activated molecules) actually undergo reaction. So nicely did this as-
sumption lead to the observed change of reaction rate with temperature,
and so difficult has it proved to provide an alternative explanation, that
chemists almost without exception believe the “activation hypothesis” to
be sound. Apart from the one success for which the hypothesis was in-
vented, it has led only to difficulties. The existence of activated molecules
has in general not been demonstrated experimentally.* Until within the
last few years workers in chemical kinetics had been unable to imagine how
molecules of the very high energy required by the “activation hypothesis”
in the case of homogeneous unimolecular gas reactions could be supplied fast
enough to account for the observed reaction rates. This question is by no
means completely solved even now. Perhaps most disheartening was the
failure of classical models in the matter of furnishing a convincing picture
showing why a molecule was inert until it had a large excess of energy.

Nowadays this failure is easily understood. Classical mechanics could
not even approximate the phenomena of chemistry because it did not in-
clude the principles which govern the forces between atoms. The “quantum
resonance” has no direct counterpart in the older mechanics. Moreover, as
will appear later, changes in configuration of a molecular system depend
essentially on the very features of the problem which were quite immaterial
in the classical theory, namely, the regions where the potential energy is
greater than the total energy, and therefore inaccessible to a Newtonian
system, which must have positive kinetic energy.

4 See, however, M. Cantor, Wied. Ann. 62, 482 (1897), also O. Wulf, Proc. National Acad.
12, 129 (1926).
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In the considerations which follow, the question might arise as to whether
it is proper to assume, as we do, that atoms brought close enough together
to interact chemically can be approximately described by the functions
which describe them when they are alone. This assumption is justified by
the success with which the “zeroth” approximation has dealt with the homo-
polar bond. The work of Heitler and London has shown that in the main
the phenomena of chemical combination are reproduced without considera-
tion of higher order effects. The phenomena of chemical reaction should
have less stringent requirements for presumably reaction takes place only
when the binding between parts of the molecules is normally loose or is
greatly loosened (compared with the normal state) by a large excess of inter-
nal energy. This state of affairs is very fortunate for the development of
the quantum theory of chemistry, for the higher approximations are ex-
tremely complicated.

I. QuariTaTiveE DiscussioN oF THE WAVE EQuaTioN

Whereas formerly the difficulty was to find any mechanism for a chemical
reaction, the difficulty now is to decide which of many possible mechanisms
is the actual one for a particular reaction. It is the chief purpose of this
paper to describe a process which, with only slight modifications, will be
applicable to many special types of reaction. The case in which the energy
of activation, determined from the temperature coefficient, is greater than
the energy of dissociation of the bond where reaction occurs is perhaps the
most difficult but it will not be treated because it is not certain that such
cases exist among chemical reactions. A possible treatment of this case
has already been sketched® but it might be remarked here that the mention
of certain reactions in the reference does not imply that these reactions are
necessarily members of the class considered.

It will be desirable first to discuss the wave equation for a case of one
degree of freedom from a point of view which is well known.! We may
write it in the form

T e v=0 1)
(BT =0, (

If V(x) were constant this equation would have the simple solution
zl/=‘(¢16:\‘:(2‘lr’5/h) [2m(E—V)]1/221. (2)
When V is not constant we may hope to approximate the solution by

a similar form in which the amplitude and wave-length of oscillation or the
decay constant (depending on the sign of (Z-V) ) are variable. The forms

et @milh) £2mE-V)12ds

T oy ¥

§ R. M. Langer, Phys. Rev. 33, 290 (1929).
6 H. A. Kramers, Zeits. f. Physik 39, 828 (1926) ; G. Wentzel, Zeits. f. Physik 38, 518 (1926).
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have been shown capable of yielding a good approximation. For (E-V)>0
the solutions can be combined to give a real function

cos{ (ZW/h)f[Zm(E—V)]l/de}

¥= [2m(E—V)]ie @

and for (E-V)<0 the boundary conditions are satisfied by the solution

e+(21ri/h)j[2 m(E—-V)l/2dz

[2m(E— V)]t

y= (5)

Kramers has shown how the constant of integration can be chosen so
that the solutions for the different regions will go continuously into one
another through the singular points where £E— V=0 in which (4) and (5)
fail. The condition that this can be accomplished is approximately the old
quantum condition on the energy, namely,

fpdx-=2f%[Zm(E—~V)]1/2dx=nh 6)

where x; and x, are two successive points at which £— V'=0. Between these
two points there are # zeros of ¥,,.

It should be noticed that the amplitude of ¥ is especially large (although
it turns out to be finite) at x; and x;. Moreover the exponential decay out-
side of the region x; to x, is so rapid that it will usually be permissible to use
linear approximations for VV and actually carry out the integration indicated
in (5). For values of x even moderately remote from «; or x2, ¥ will be practi-
cally zero.

III. A SysTEM CAPABLE OF CHEMICAL REACTION

The problem we wish to consider is the case in which there are more than
two points at which E— V =0. For the sake of definiteness let us speak of a
special but typical example—an atom A4 of free valence two is acted on by
two heavy atoms, B and C, each with one free valence. Let the motion be
restricted to one dimension.

According to present notions of chemical forces in the configuration

B 4 c
the potential energy between B and 4 might be of the type shown in Fig. 1
by the dotted curve B4, that between C and 4 by the dotted curve AC
(the potential energy at infinite separation is taken as zero). Then if we
assume that all separations are large enough so that no other mutual poten-
tials arise, and that the two mentioned are not appreciably changed, the
potential energy of the system will be represented by the full curve BAC.

Under the circumstances a classical system could not undergo the re-
actions B4+ C=2B+AC unless the initial compound had almost the dis-
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sociation energy over its normal state. However, we know many reactions
which fit our case but which could not possibly depend on the molecules
having such a large energy. We shall see that in quantum mechanics the
reaction might proceed even for certain lower values of E.

First we shall inquire as to the allowed values of the energy of the com-
posite system. For values of E less than the maximum of the curve B4 C (and
only such values are interesting here) condition (6) will be satisfied for almost
the same energies that were characteristic for the curves B4 and AC. The
composite system has therefore all the levels of the two simple systems which
could be formed from it by removal of either B or C. For a particular value of
E, characteristic of one of these systems, the solution of the wave equation
for one of the regions where (4) holds (namely, the one where (6) also holds)
will be practically the same as though the corresponding simple system
were alone. Condition (6) assures that this solution will go to the proper

Fig. 1. Potential distribution for rearrangement reaction,

exponential form (5) just outside this region. The question now arises how
shall this solution be prolonged into the other region where (E — V) is positive.
In general the condition (6) will not hold for this region and it will therefore
be impossible to get a continuous function different from zero in this region
which will satisfy the boundary requirements beyond it. We conclude that
if (6) is not satisfied in each region separately the solutions for the com-
posite system are approximately the solutions for the two component
systems. In the special case in which the two component systems have an
energy level in common, (6) is satisfied for each of the two regions and a
continuous solution can be made up of a linear combination of those solutions
for the separate systems which correspond to the common level. It is this
coincidence which forms the basis for the present theory of chemical reaction.

The argument just outlined indicates that it will be possible to treat
the problem by the methods used in perturbation theory although there is
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no small quantity which can be considered as a perturbation potential.
The point is that the problem can be formulated so that the matrix elements
of the perturbation functions are small quantities.

We shall do this by the method of variation of constants’? starting with
the wave equation in the form

8 -
AV ———V¥ — ——F=0. @)
h? h
The potential energy V=V®+ V® where V® is the potential between
Band 4, and V? that between 4 and C. The general solution of (7) is
\I/=chkll/k€27riEkt/h (8)
where the functionsy satisfy the equation '
8rim
Al//k-l-—hT(Ek— V)Yp=0 9)

for the appropriate energy Ej;. For simplicity we shall always take the
functions satisfying (9) to be real and to include a normalizing constant
such that

f|¢k12dx=1. (10)
The equations
8mim 4rmi
A¢(1>__}lz_V(1>¢(1> __7Z_¢(1) =0 (11)
8mim drmi
AY® — - V(2)¢(2>__}:_¢<2>=0 (12)

describe the component systems A with B, C at infinity and 4 with C, B
at infinity, respectively. If the solutions of (11) are known functions

‘pi(l)e(21ri/h)E¢t }

and those of (12) § oG

(13)

we are led to expect that a zero'th approximation to (8) will be given by

Vo= ZCigl/i(l)e(Z"“")E“+ Z,Yﬂ{,j@)e(ari/hm,-t. (14)
i i

To justify this we try for a better approximation by regarding the quanti-
ties C; and v, as functions of the time instead of constants. Their derivatives
will prove to be small and therefore (14) is a proper approximation. Sub-
stituting (14) in (7), considering C; and +y; functions of ¢ and using (11) and
(12) we can get for example

7 P. A. M. Dirac, Proc. Roy. Soc. 112, 674 (1926); E. Schroedinger, Ann. d. Physik 83,

956 (1927). The method of breaking up the potential energy has also been used by F. Bloch,
Zeits. f. Physik 52, 555 (1928).
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—(41rmi/h)( Zéi\l/i(l)e(2wi/h)lf}it+ Z,S,J_%(a)e(zri/h)mt)
i 7

_(87,.2,%/}22)[1/(2) SC ahiWeeriimBit L Z,Yj‘l,].(z)e(zﬂ/hw:‘t]=0
[ 7
from which by multiplying by ¢¥;/® and integrating
C‘,-:=(21ri/h){ S CV i Demilh) (BBt L EWV,-,-/(2)e<2”/’l><E"—E">‘] (15)
i i
where
Vie @ = fV(”gbi(l)\,bi»(”dx, VW= fV(”t//j(”%'mdx’ (16)
similarly
q'/]v=(27ri/h)|: D CiV iy @il BimEint L 3" . (D g2rilh) (Ej—Ej')tJ (17)
i i
where
Vi@ = fV<2>z//i(1’1//,-/(”dx, Vip®= fV(l)\bj(2>¢,-f(2>dx. (18)

When it is considered that the functions ;¥ diminish extremely rapidly
in receding from the region where E;— V is positive and corespondingly for
¥,;? it is seen that the quantities of (16) and (18) are very small, as they
should be, to establish our procedure. In the integrations, besides using

[vivpuw=o iz (19)
[vipso=0 j=y (20)

we have used the fact that
[wirpa=o (21)

and have therefore neglected v, /i %;'dx and C,f M 2dx as being of second
order. If the problem is to be completely and properly solved then the
functions y®and ¥® would have to be really orthogonal and (21) would be
exactly zero. It is believed. however, that the results then obtained would
be qualitatively the same as those here given. Of course in cases where
(21) does not hold, i.e., where the functions are not even approximately
orthogonal, our method does not apply. This failure will occur only when
(£~ V) near the maximum of V is fairly small which is a very special case
of little importance in most problems.
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If the E;’s and E;’s are all distinct we can integrate (15) and (17) by
discarding all terms excepting the important one which has zero exponent
and obtain a first approximation instead of (14)

Vi) = D Cil(De@rilh) BtV Doy PRIl (Bit Vi)t (22)
i i

If the system is initially in a particular state so that the constant coeffi-
cients in (22) are all zero except one, then that one state will persist with
only a slight energy displacement (i.e., phase change) due to the presence
of a third body. That is to say no appreciable reaction occurs and therefore
the case of all different energy levels is of no special interest for us.

Something new arises when one of the £;’s coincides with an E;. Then
there are two terms in (15) and (17) with zero exponents and which there-
fore may undergo a considerable variation in amplitude. For these two
states we shall label the energies (%; and E;) E; and E, respectively, and
the wave functions ;¥ and¢;®) » and »® respectively. Then with E,=E,,
(15) and (17) reduce to

C=Q2ni/h)[CVuu®@ AV 0] y=2ri/B) [CVue @44V, V] (23)
with

Vi ® = f VOurds V0= f V Oyuda

(24)
Vie® = f V®yydx V,, D= f VWy2dx
Equations (23) are solved by the substitution
C=C"exp [(2ri/h)at] y=+%exp [(2ni/h)at]
The values of o are determined from
Vuu(z) -« Vvu(l)
‘ =0 (25)
Vuv @ Vvv(l) -«
The roots are
oy = %’(Vuu@) + Vvv(1)> + [(Vuu(z) + Vvv(l))2/4+ V'uu(l) Vuv(z) - Vuu(z) Vvv(l)]llz
(26)

= %(Vuu(”—l"vvv(l)) + [(Vuu(2) - Vvv(l))2/4+ Vvu(l)Vuv(2) ]1/2

8 There is an ambiguity of the sign of # with respect to the sign of ». Consequently V,,®
and V,..» may be either positive or negative although their product is always positive. Cor-
respondingly there are two linearly independent solutions for the composite system. For two
similar component systems one is symmetrical, the other antisymmetrical, in the attracting
centers B and C. The symmetrical and antisymmetrical solutions which appear in problems
involving several degrees of freedom involve oscillations which play a part in certain chemical
changes and will be considered elsewhere. F. Hund, (Zeits. f. Physik 40, 742 (1927); also
43, 805 (1927)) in discussing the wave equation, more particularly from the spectroscopic
point of view, has emphasized the existence of solutions symmetric and antisymmetric in
the coordinate, and has shown how in some cases these might describe a change in activity
of a symmetrical optically active substance.
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and
o =%(Vuu(2) + V'uv(l)) - [(Vuu(2) - Vm)(l))2/4+ Vvu(l)Vuv(2) ]1/2 . (27)
These are always real because V., and V,,® have thesame sign. For these
values of & (23) can be solved in the form
C=Co+e<2n/h)a_f_+Co~e(2ri/h>at_
) - (28)
..Y:70+6(2r1/h)ai+,},0—6(27r1./h)a_

where the constants C*, v and C°, v°~ satisfy the relations
CH=V 0 Wy /(0 — Vo ®) = (g — Vo ©)y 0/ V@

= { (Vuu(z) - Vvv(l))/z-l_ [(Vuu(2) - V'uv(l))2/4‘+ Vvu(l)Vuv(2)]1/2}’yo+/Vuv(2)
and
Co—= V,,u(l’qfo‘/(a_— VW(2)) = (a“— VM(U),YO—/VW(D

= { (Vuu(z) - Vvv(l))/z - [(Vuu(z) - Vvv(l))2/4+ Vvu(l)Vuv(2)]1/2 } 'YO—_/Vuvw) .

If the system is initially in any state other than « or v then it stays there
as in the case of Eq. (22). Let us say, however, that the system is, for ex-

ample, initially in state . Then the first approximation to the wave function
is

(29)

\I/l=C%e(27ri/h)E‘t+’Y?}6(2"“h)E?t (30)

where C and v are determined by the Egs. (29) together with the initial
conditions

’COI 2 lco++c0—! 21
[y | 2= *++a- | 2=0.
e+, C0==|Co|ei= the Eqs. (29) and (31) give

(31)

Writing Co = [Co+
t—6-=2n+Dnw

|yt =] v | = | Voo ® |/(asFa)
= | Vio® ’ /2[(Vwm_.VM<1>)2/4+VW(1>Vw<2>]1/2 (32)
Using Egs. (26) to (32) and with the abbreviation
Iy, = [(VW@)—V”“>)2/4+VW“)VM,“)]W (33)
Eq. (30) reduces to
U= (1/2m) { (Ve ® =V, D) sin 2avgt+2hv, cos 2wt |u

_+_ [ZVuv(2) sin 21['1/115]7)} e(21ri/h)(E1+(Vuu(2)—-Vvv(l))/2)t+i6+ (34)

This can also be written
1= (1/lg) { [(72) 2+ (Vi @ =V, 0)2/4]1 20 sin 27 (v, +)

+Vop® - v-sin 2wt } @il 0 E+Vu®=Vo,0)Dt+ist (35)

where tan 27¢ = 2hv,/(Viu® — Vo)
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The coefficients of # and v in (35) inside the bracket are harmonic func-
tions of the same period and amplitude. There is a phase displacement so
that at one moment the coefficient of « is zero and at a time ¢/», later, that
of v is zero. The frequency of this oscillation », as defined in Eqgs. (33) and
(24) depends on the shape of the potential energy curve. Usually the equa-
tion hv ;= V,,Y = V,,”® will hold approximately. Consideration of this shows
that the rate of transfer from « to v depends on the height of the maximum of
V above E and especially on the range of x over which V-E has large positive
values. These quantities enter exponentially in », which is therefore sensi-
tive to slight changes in them.

IV. APPLICATION OF RESULTS To CHEMISTRY

The valence properties attributed to the system previously used as an
example had of course no practical significance. The calculation of the last
section will apply to any case where the potential energy curve is of the type
shown in Fig. 1. And even Fig. 1 is to be considered in a generalized way. The
potential energy need not go up indefinitely high on two sides; it might be-
come asymptotically horizontal on one side or on both. There need not
even be two minima, although if there is only one a slight modification must
be introduced in the calculation; this will be done elsewhere. The particular
features which are really characteristic are that the equation E,— V=0
shall have more than two finite roots, and that E, shall approximately satisfy
Eq. (6) in at least two different regions.

A few remarks may be made about the assumption that the energy £,
should exactly match in the two regions. The problem can be solved even
when this is only approximately fulfilled. No essential change results. When
there is a continuous distribution of solutions in one region, one must in-
tegrate over all which nearly match the energy E, and this also involves
no change in principle. A question arises as to how often even an approxi-
mate match can be expected in molecular systems. First it should be pointed
out that one of the characteristic features of infra-red spectroscopy is the
ease with which it is possible to arrange all lines in a single or a very few
series. The interpretation of this is that the different fundamentals have
multiple relations between them which means that the energy match we
require will be nearly satisfied quite often. Moreover, superposed on the
vibration is the rotation spectrum so that each level is effectively broadened,
especially when we consider that these rotations have long periods and are
therefore easily subject to perturbation so that they may become practically
continuous over considerable ranges. Of course when there is a large con-
tinuous range of energies or when the two component systems are exactly
alike, there will be many different values of energy which match exactly.

We can describe the matter in more nearly chemical language. A system
may be capable of existence in two geometrically different configurations.
In each of these configurations it may have only certain motions charac-
terized by the total energy. If one of the allowed energies of one configura-
tion coincides with one of the other then according to Eq. (35) the system



102 R. M. LANGER

will periodically change from one configuration to the other. If the configura-
tions are physically distinguishable then this change can well be called a
chemical reaction. It is important to notice that one configuration changes
to the other not from the normal state but only when it is in the excited
state of the first configuration. This is the theoretical foundation for the
“activation hypothesis.”

The rate at which the reaction proceeds depends on external conditions
such as pressure, temperature, etc., as well as on the forces of the system
itself, for these external conditions determine how many systems will be in
a favorable state for reaction at any moment. Let us say that a system
changes in a reaction from configuration I to configuration II, let us call the
states of equal energy u for configuration I and v for II. Then among a large
number N of states in configuration I a fraction f, will be in the important
state #. This fraction will depend on the temperature according to the Boltz-
mann law. The full Boltzmann quota will however not. be reached unless
the pressure is high enough so that the number of collisions raising molecules
of configuration I to state u is large compared with the number which leave
state u according to Eq. (35). The rate will therefore depend on the tem-
perature in the way required by the “activation hypothesis” and will also
diminish with the pressure in the manner already discussed in the study of
unimolecular gas reactions.® There is still a further interesting possibility.
According to the ordinary interpretations of the wave equation the fractional
number of systems in state v will be given by the square of the coefficient of
v in the solution (35) of the equation. In our case this is

| Vo ® |2 sin? 2t/ (w,)?. (36)

If collisions played no part, the systems would pass back and forth between
u and v, but actually they will tend to remove the systems from state v to
other states of configuration II while on the whole they will scarcely affect
the number of systems in state # which is nearly in equilibrium with other
states of configuration I. Under ordinary conditions when this action of
collisions is taken into account the expression (36) will be changed into one
with linear initial dependence on the time so that the reaction will follow
unimolecular exponential law. But if the pressure is low enough, that is, so
that the time between collisions is long compared with the period 1/7, in
(36) the periodic feature will be important and the rate of reaction will be
enormously diminished. Such an effect has been observed!® and been in-
terpreted in another way which may of course be the correct way.

V. MOLECULAR REARRANGEMENTS

The process which has here been treated may not be clearly in evidence
in some reactions because of preliminary or consequent steps in the reac-

9 0. K. Rice and H. C. Ramsperger, Jour. Am. Chem. Soc. 49, 1927, and 50, 1928. See
also L. S. Kassel, Jour. Phys. Chem. 32, 1928.

If there is more than one pair of states # and v, then the most general dependence on pres-
sure considered by these authors can be reproduced without taking on their special assumptions.

10 Chariton and Z. Walta, Zeits. f. Physik 39, 547 (1926); N. Semenoff, Zeits. f. Physik
46, 109 (1927); 48, 571 (1928); also G. Sprenger, Zeits. f. Physik. Chemie 136, 49 (1928).
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tions. Nevertheless there are cases where the existence of such a process has
been fairly well established as a part of a chemical change. For example in
the so-called Hofmann rearrangement one of the steps is the change

O=CI'—N= — 0=C=ZT7
R R

A common rearrangement is from the “cis” to the “trans” configuration
of a complicated molecule. This is represented diagrammatically in Fig. 2.
It is easy to picture in these rearrangements a potential energy curve of
the type of Fig 1. The various types of photochemical behavior in these
reactions are easily understood on the present theory. Consider for example

oO——=0O o—=0O
—_
—_—

N——x >

Fig. 2. Diagrammatic representation of the “cis” to “trans” reaction.

the case where the reaction of Fig. 2 can be made to go almost completely in
one direction or another by illuminating with different wave-lengths. In the
configuration I it might take kv, to raise the system to state » while in con-
figuration II, it might require a different energy kv, to raise the system to
state v. Illumination by frequency around », will clearly tend to make the
reaction go in one direction while frequencies around », will push it in the
other. If the values kv, and hv, are large compared with k7 the reaction may
be made to go almost to completion in either direction. Other types of photo-
chemical reactions can be treated in a similar manner.

VI. CaTALYSIS

The fundamental requirement that two configurations of a system must
have a common energy level will of course not always be sufficiently met to
permit appreciable reaction. A suggestion comes immediately from the
quantum mechanical theory which may explain a very important type of
catalysis. The curious thing about catalysts is that often without any very
energetic interaction with a molecular system they have a great influence on
the rate at which the system undergoes a change involving considerable en-
ergy. One might imagine that the catalyst have a fairly weak attraction—
that of an induced dipole for example—on the molecule. The proximity of
the catalyst will change the shape of the potential of Fig. 2 and even a small
change may suffice to bring about an equalityof energyin two configurations.
The reaction then proceeds without affecting the catalyst. This perturbing
influence may be a specific one where a particular substance affects another
so as to match energy levels just accidentally. That substance may then
catalyze only one type of reaction. Another substance may naturally have
a strong field of force so that it will perturb almost anything. Moreover
this perturbation may be variable, depending on the orientation or concen-
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tration of molecules and so there will always be a match in energy level for
some molecules. Such a substance will be a catalyst for many reactions. A
solid body has a good chance of being of this type. The natural irregularity
of the surface may provide the variability which is required for different
reactions. We have evidence that a catalytic surface often is especially ac-
tive in special “spots” and this is nicely in accord with our picture. On these
spots, possibly with rapidly varying curvature, some molecules are sure to
be perturbed just the right amount.

To be sure this theory does not preclude the existence of many totally
different kinds of catalysis.

VII. THE RACEMIZATION OF PINENE

Since its investigation in vapour and liquid phase!! the unimolecules
transformation of pinene from a dextro to a laevo variety or vice versa has
been of great interest to workers in chemical reaction theory. This reaction
involving no change of heat content is carried out only through molecules
having an average internal energy of about 40,000 cal. per gram mol.

This is a particularly simple case under our theory. The pinene molecule
has the structure

Cng
C
H, H
AN
C _
CHg3
C/
\CHa
H\ H
/C C
H H
C

A

The reaction presumably involves a rearrangement of the central group from
a position above the plane of the ring to a symmetrical configuration below
it. Whether the motion is through the ring or around the corner carbon,
the potential energy can be represented in a way of the type of Fig. 1 with

11 D, Smith, Jour. Am. Chem. Soc. 49, 47 (1927).



QUANTUM MECHANICS OF CHEMICAL REACTION 105

the special feature that it is symmetrical to a line through the maximum of
the potential. In this case all the energy levels in one configuration will be
matched by levels in the other and so the reaction could proceed from any
level. The rate at which the change takes place is extremely sensitive to
the value of E since in the important part of (35) or (36) namely »,, there
is a negative exponential factor involving (V-E). The symmetry of the po-
tential makes

Voo =V0® and V,O=V,,®

so that », reduces to
hg=Vy®@ =V, U= f V®uydx. 37

The only values of x at -which there is an appreciable contribution to the
integral are those between which E-V is negative. In this region » and v
will be given by expressions of the form of Eq. (5). It can be shown from these
that (37) will contain as an essential factor exp [(2wi/h) [[2m(E-V)]'2dx]
where the integral is taken over the range where £— V' <0 and where V is
the resultant potential energy function. The square of this expression de-
termines the rate of conversion between # and v and we see why the change
is faster for molecules of higher energy. On the other hand there are fewer
molecules of higher energy so that the average energy of the reacting mole-
cules is limited.

There is some possibility of computing numerical values for this reac-
tion from the variation with pressure. We shall however in this paper avoid
numerical comparison with data.

Other reactions of this type are known in liquid phase although not all
appear to be as simple. In particular it is by no means necessary to have a
symmetrical potential energy function. In fact the potential function is
usually not symmetrical. This however is no complication in principle.

VIII. DECOMPOSITION

The straightforward breaking up of a molecular system is a very import-
ant class of reaction. Many of the homogeneous unimolecular gas reactions
are of this type. A common feature of most of these reactions is that they
involve the ejection of a part from a central position in a more or less sym-
metrical system. Notice for example the structures

Lo
H—C—H H—C—H

| |

H—C—N=N—C—H azoisopropane
| I

H—C—H H—C—H

| |
H H
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! _
H—C—C—0—C—C—H diethyl ether

It might be imagined that for small oscillations about the horizontal axis
of symmetry the central part is attracted. If the amplitude becomes large
the opposite parts of the molecule might attract each other directly and then
repel the displaced central part. The potential energy curve would be of the
type shown in Fig. 3. For every allowed positive value of the energy in the
region with the minimum there is a continuous range of nearly equal values
allowed in the outside region. A similar diagram holds for radioactive prob-
lems which therefore also come under the class here considered .2

[

Fig. 3. Potential distribution for a decomposition.

The existence of a continuous range of energies requires a slight devia-
tion from the development of Eq. (35). We shall go through with this with-
out striving for completeness mathematically so that it must not be expected
that our results will cover all cases satisfactorily.’* The failure of the present
treatment comes about just as in the case when there are two minima,
namely, when E-V does not become a large negative quantity over a suffi-
cient range near the maximum of V.

Under the conditions assumed, the solution to the wave equation must
be written

V(2)= 2 Cabs®(x)e@ri/bmit f’Y(E)W”(E, x)eCrimEGE  (38)

12 Radioactive disintegration has recently been treated by Gamow, Zeits. f. Physik 51,
204 (1928), and by Gurney and Condon, Phys. Rev. 33, 127 (1929).

18 A similar treatment has already been given by }J. R. Oppenheimer, Phys. Rev. 31, 66
(1928).
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where we normalize the orthogonal functions y® (E, x) so that
(AE)-1 f f YO (E, )y ®(E, x)dEdx=1 (39)
AE

provided | E' — E | KAE where AE is any arbitrary interval of energy, while
the same integral is zero when | E’— E | >AE. The condition

f PO ()Y D (E, 2)da=0 (40)

is still required.
We can now repeat the process used with Eq. (7) and find

Ci:=(21ri/k)[: STV i D@l ) BB f,Y(E)VE‘,(1)6(21ri/h)(E—E.")tdE:|

&(E/)z(zri/h)li ZciViE,(2)8(27ri/h)(Ei—E')t__|_ f'y(E)VEE'<1>e(2”‘/")(E‘E"‘dE:| (42)
where

Vie® = f V@O O

Vasw= [ VOpOE, pe 0 (@)ax
(43)
Vig® = fV(2?¢i(1)(x)t//‘2)(E',x)dx

Vew®= lim (AE")! fdx VY@ (E, £)y@(E’, x)dE.

AE'

As before we wish to have the system initially in state » so that we take
Co=|C0| e, YeW=u, |C|=1, CL=0 for ix=i’
v'(E)=0, YO(E, x)=v
Since the quantities (43) are small we can solve (41) and (42) with enough

approximation for short intervals of time by putting for C and y(E) their
initial values. The integrals then are

C=(2mwi/h)-CVuu @t+CO (44)
Y(E)=CV,,®/(Eu—E')- [e(zm'/h) (Bu—E"t . 1] . (45)

The initial change in the fractional number of systems in states v is given by
integrating the square of (45) over all energies E’. If N, is the number of
systems in state u
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—ANu/Nu=f | Vo ® | 2/(E,—E")2- (2—2 cos { (2x/h)(E,— E')At} dE’
(46)
=4f | Vo ® | 2/(Ey— E")?-sin? {(x/h)(E.— E')At} dE’.

If we note that only values of E’ near E, contribute to the integral, and
that V,,® is a slowly varying function of E’ we may write

* sin? {r/h(E,— E")At} -dE’

AN,/N,=—4| V,,®@ | 2f

e (E,—E')?
© sin? ¥ '
=—dr/h | Viu® | wf —dx (47)
o X
=—(4n2/h)- | Vi@ | 2AL,
In integral form
Nu=Nu06~(41r2/h)|V152v),2z (48)

showing the exponential decay characteristic of decomposition processes.

IX. CoNCLUSION

The sketchy treatment of this paper is of course not sufficient to estab-
lish the theory proposed. It will be necessary to show numerical agreement
with experiment. This will be attempted in a more concrete treatment to
be published in the Bureau of Standards Journal of Research. Some special
experiments which might test the point of view will be mentioned in future
papers.

It should be emphasized that the analysis which has been presented ap-
plies not only to one-dimensional cases such as those mentioned in this ar-
ticle but, without appreciable change, can be made to describe similar
problems from the point of view of electron coupling, or the very important
reactions in which two parts of the system interchange positions. The funda-
mental requirement is simply that a molecular system be capable of existing
in physically distinguishable states of equal energy. From this general point
of view practically any type of chemical change can be treated in the manner
of the present paper. The special problem in each case is to find the per-
turbing potential which acts on the reactants, making it possible for them
to go over into the reaction products. This question will be further discussed
elsewhere.



