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Introduction.

IT seems that Abrabam + was the first to consider in any

detail an electron with an axis. Many have since con-
sidered spinning electrons, ring electrons, and the like.
Compton 1 in particular suggested a quantized spin for the
glectron. It remained for Uhlenbeck and Goudsmit§ to
show how this idea can he used to explain the anomaleus
Zeeman effect. The assumptions they had to make seemed
to lead to optical and relativity doublet separations twice as
large as those ohserved || "

The purpose of the following paper, which contains the
results mentioned in my recent letter to ¢ Nature’9, 1s to
investigate the kinematics of an electron with an axis on the
basis of the restricted theory of relativity, The main fact
used is that the combination of two * Lorentz transforma-
fions without rotation ™ in general is not of the same form
but is equivalent to a Lorentz transformation with a rotation.

The physical interest of the result obtained is that it shows
that Uhlenbeck and Goudsmit’s assumptions really lead to

* Communicated by Prof. N, Bohr, I’h.D,, LL.D,

¥ M. Abraham, A=nnalen der Phystk, x. p. 106 (1803},

1 A. K. Compton, Journ. Frankl. Inst. Aug. 1921, p. 145,
§ Uhlenbeck and Goudsmit, Natwrwissenschaften, Nov, 20, 1025,

p. 953; ¢Nature,” Feb. 20, 1926, p. 264.
" || See also: Urly and Bichowski, Proc. Nat. Acad. of Sciences, xii.

p. 80 (1926).
€ ¢ Nature,” April 10, 1926, p. 614.
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y. Mr. [.. AH. Thomas on the Kinematics

the correct doublet separation at the same time as the
anomalous Zeeman effect when the problem is treated by
the new quantum mechanics *. These explanations do not
seem to require anything more of the extra terms in the
equations of motion of the electron than that its axis should
precess about a mugnetic field H with angular velocity
(efmec)H, that in revolution in an orbit there be some
secularly conserved angular momentum, and that the con-
tribution of the electron to this angular momentum be 2/4,
The above assumptions are not, however, sufficient for
more than the first order doublet separation. The complete
Sommerfeld formula weuld seem to require a more complete
specification of the extra terms in the equations of motion.

Summary.

Tn the first four sections of this paper the notation used is
explained, the relativity kinematics involved 1y discussed,
and a first approximation to the equations of motion of the
electron is considered. The change in the direction of 1ts
axis is given by

‘-if-[ g B ryxE)! xw] (4:122)
ds me met 148 f '
The Abraham spinning electron is discussed briefly. In
spite of its inadequucy it is Interesting as showing that the
assumptions made are not unreasonable.

In the sixth section the secular changes in an electronic
orbit are discussed. The equations obtained are

asl ( e o
= |{— — . 71
i [ mcH+KK)xQ]’ (6-71)
dK ( e o :| _
Rﬁ — EmﬂH‘I‘—EQ)XK ] . . (672)
In the seventh section a correspondence principle argu-
ment i3 developed giving approximate Zeeman effect and
doublet term values and the Heisenberg theory modification
of these values is stated ft.
Finally, a summary of the reasoning by which the
TUhlenbeck-Goudsmit theory connects the Zeeman effect
and doublet separation is given f.

* W. Heisenberg and P, Jordan, Zeid. fiir Phys., xxxvil. p. 266 (1926).
T The Hel-enberg theory term values, which were very kindly supplied

to me by Dr. Heisenberg, are taken from the paper by him and Professor
Jordnn (foc. eit. ).

1 Uhlenbeck and Goudsmit, loe. cit.
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of an Electron with an Axis.

1. Notation.

In the saquel it is conveniont to use in some places ordinary
vector notation, letters in heavy type denoting vectors, the
same letters with suffixes 1, 2, 3 their components, and in
other places tensor notation, with the usual summation con-
vention, e. g. g,, da” short for 2, g,, dx’. It will be well,
therefore, to connect the two notations here, as well as to
state the units that are adepted, especially as these difter
from those nsed by Eddington *,

The position-vector r of a particle and the time ¢ at which
it is at that position are connected with its four coordinates
2, 2%, 20 2t by

, . (101)

r is in centimetres, ¢t in seconds, s, the * proper time”” for
the particle, is given by the relation

ds? = A di*—dr* = g,, detdze*, . . (102)

where the components of g,,, the “fundamental tensor” of
relativity theory, have here, as throughout this paper, their
values for ¢ (alilean coordinates,” g¢; = gp, = gas=—1,
gy =¢", the remaining components vanishing, and where ¢ is
the velocity of light.

Let
dr
v = 3?, « &« 8 = . s e ¥ . . (1'11)
_ v? _5_ L sddr\? ar
= (1= = (1 )Y - e
so that

dzl da® da’
o= (45,95, 2),

dat

B= g

(1-13)

The electric intensity E and scalar potential ¢ are in
olectrostatic units, the magnetic intensity H and vector

* A, S, Eddington, ¢ The Mathematical Theory of Relativity,’ p. 170.
B2



4 Mr. L. H. Thomas on the Kinematics

potential A in electromagnetic units, so that

(V.A)+§¢;=O, A ¢ 1 )

[ 1 A

E=-V¢—_A4, } N )
H=|VxA],

and in empty space the field equations are

(V .H) =0,
[VxE]+%

('G’.E)=0,‘

H'.—_o,j' Coe. (123)

(1:24)

[vx:ﬂ]—lr’:=0.

¢
The four-vector %, and anti-symmetrical tensor F,, of
the electromagnetic field are given by

—A = (I':I: kﬂ:‘ kS]*} (131}
GC}E’ —_— keh

[}E — (F]4. Fm: FH)S} (1.32)
H = (Fy, Fyy, Fyy),

F,=—F, and F#,= g+ F_, otc. as usual.
Yquations (1'21), (1-22), (1-23), {1-24) bacoms {for Galilean
ccordinates}, as usual,

YA _
Se =0 - e .. (4D
-—a.._j:'u_akp -

O0F  O0F, 0L, .
et St Ea=0 . L (1)

aai': =0.. . . (1-44)
1f —cH = (P, Dy, Dy,),
E = (®g, Py, Dys), ot (1'5)
Dy = —D,,,.

®,, is also a tensor.
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The usual equations of motion of a particle of charge e
rest-mass m take the form

%(mﬁv) =£{Ei [v:]:'[]}, s s o (17715

equivalent to

d( dr\ _ f(adi lrar
d—s(m?f-s-) = € tf_.EE+E R—EXH]},
d LUl fdr

R-S(mc 3&)_ E(ds -E),

z dli-'- d v
-;—S(m—fdzr):—-ﬁ—'f?“,, e .. v o+ » (1'73)

(1'72)

or

2. Lorentz Transformations.

Lhe 1dea of a Lorentz transtormation with velocity v
unrestricted in direction is made precise by the following
definition. The coordinate system (r', ¢') is said to be ob-
tained from the system (r, t) by a Lorentz transformation
with velocity -v without rotation when the equations of
transtormation take the form

r''=r+(8—1) (r‘;:r) v—R2ve,

(= {5

where 8= (1—v?/c?)~%, Here, of course,.v has nothing to do
with the velocity of a particle as defined in (1'11), but is a
constant ot the transtormation.

It is well known that all transformations leaving the form
of (1-02) unaltered are combinations of a translation, in-
cluding change of zero-point of the time, a space rotation,
and a transformation of the form (2'1), while conversely any
snch conibination leaves the form of (1:02) uualtered. If
the order in which these are tuken is fixed, the resoclution is
unique.

The combination of two succesgsive transformations of the
form (2-1) is not In general of the form (2'1) but can be
resolved into a transformation of that form together with
a rotation. In particular it follows from the theorem of
Roderigues and Hamilton, applied to (r, ict) space or can
easily be shown directly, (¢f. (3'6) below), that the resultant

. (21
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of such a Lorentz transformation with velocity — v followed
by one with velocity v+ év, where &v is infimtesimal, resolves
into a Lorentz transformation with infinitesimal veloeity

k] F ) & - . \I
(v.av)
B 8v+(B-1) TR
together with an infinitesimal rotation > . . (2°2)
[v x 3?’]
(B"' 1)' ve ’ y

The transformation of the electromagnetic field corre-
sponding to {2-1) 1s

E = ,s{E + L“;HJ-} +(1—8) (E?'f) v,

4 =8{H [”;E]} +1-)E-Ty

72

(23)

3. The kinematical description of the motion of
an electron,

Suppose first that the motion of the electron can be
described, to a sufficient appreximation, by giving the
position at any time in (r,¢) of a system of coordinates
moving with the electron ; that is, by giving coordinate
systems (p, ) in which, at different times in (r, #), the
electron 1s instantaneously at rest at p=0, r=0, and which
differ successively from one another by the retation, sup-
posed definite, which the electron undergoes, as well as by
that change of origin and time (7) direction necessary for
the electron still to be instantaneously at rest at p=0, r=0
in (p, 7> This will fix the system {py, 7,) for t=¢; in {r, ¢)
in terms of (p,, Ty) for t=1¢,.

At t==t, let the electron have position r, and velocity v,,
with Bo=(l—v2/c*)—% in (r, t)- Then, by (2'1), that
definite system of coordinates (R, Tp) in which the electron
is instantaneously at rest at the origin and which is obtained
from (r, ¢) by a translation and a Lorentz transformation
without rotationis given by

Ry = 1r—1+(Fo—1) gr_r“-'vﬂ)vﬂ—ﬁuvu(t—tp)fvl

T[}E

nzﬂ_ﬁﬂ{t_t{j_(r——rg.ﬁ‘}}.l I | J

C

(31)
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- The system (py, 7o) 18 specified by KEulerian angles

($os 95, dro) glving its angular position in (Ry, I3}, so that
'\]

po1 = B (cos ¢y cos 0y cos yr, —sin ¢y, 8in Jry)
+ Fyq (510 by cos 8, cos ey + €08 by 811 Yy
— g 3in 8 cos y,

ﬂ’,ﬂw

Pog == R.m ( —C08 clb{] CO8 90 sin ‘\I/’g—" sin (;bu CO3 '\,!"ﬂ)

+ Fog { —sin ¢y cos Gy 81n Y + €08 g coSrg)
+ 243 sth g sin Yy,
Po3 = Ly cos ¢, sin B |
+ Ry, sin ¢, sin 6, + £o3 cos 6, /

which will be abbreviated as
Poa = ‘;:[Iﬂb Roh « + & s s (3'21)

while 7, = T,
The system (p;, 7} for t=t;=¢,+d{, in (r, £) 1s specified
in the same way in terms of ry=ro+dry, v,=v,+dv,, ote.

Lt
dt, = (dyrysin G cos dy—db; sin ¢by,
d\ry sin 8, sin ¢y + A8, €03 ¢, dipo+dyrgcos ). (3°22)

Sinee the electron iz instantaneausly at rest at the origin
in both systems, the infinitesimal transtormation fromn {p,, 7,)
to (p;, T;) must be of the form

PL—Po = {{pox Iﬂ] — Tyl } s,
T — T, = — {1+ (Pa - B }dsﬂ,i

c:

> . . {323)

where dt,=p8,ds, and 1j, ny are the angular velocity and
linear acceleration of the electron measured in (py, To) at &

in (r, £).
If
e = S } (3-24)

oy = gﬂaﬁ ﬁ::z.:

w;, , are the angular velocity and acceleration measured in

(R, To)
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By eliminating (r, ¢} from equations (3'1) and the similar
equations for (R, 1%}, (cf. 2:2)

R, =R, + (ﬁﬂv;;l> I:Ro % [V, X dVD]]

~Bo 1 { dvy+ (B ~1) '(‘Eq.éﬂz vn)’n } ;

e .
Ty= Ty~ F£ {(RU - { v+ (8y— 1) '(vﬂvf:n) Vo } ) } oo
I A {} !
(8:3)
so that, referred to (R,, 7%), (Ry, 7%) has a rotation

(By—1) (Vo x dvy] [ ¥,

as well as a velocity
Bﬂ {'ivu-l-Bn (ﬁu — 1) ('Vﬂ . flvg] ?uf‘vﬂg:
Comparing (3-23) and (3-3), using (3:21), (3:22), (3:24),

fodsy = Bo { dvy+ (By—1) (vu{,ﬂf%) Vo } v oo (341)

X dvy |
V[;E

waSD p— d§g+ (}3{]"—1) [vﬂ 3 v + v (3.4:2:)

If Gy is the rate of change of angular velocity referred to
(Rp, 7)) at t=1y1n (z, ), by (3°3), since w; is measured in
(R, 77, _

Wi — W, (ﬁn—l}[ dv, :l
~ds, ~ Gy + V.2 W, X voxdsﬂ] ,

L. e G, = ‘i‘:’ — (ﬁ‘;ﬂg L) [wo X [vﬂ X ;—221:]] . .« (33)

This means, inter alia, that if an electron were to move in
a closed path, and its axis of rotation at each moment did
not change its dircetion in the system of coordinates in
which the electron was instantuneously at rest, yet after a
cycle the direction would be different, In short, & and
dw/ds are not the same.

For a change of the coordinate system (r, t), w so defined
does not change in a simple manner. This difficulty can be
got rid of in two ways,
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1. If

(w', w!, w*) = w4+ (B - 1)'“:,2?) Y,

. . {861)
(W.¥V

then =" is a four-vector transformed like d2” and having zero

time component and space components equal to w 1n any
system in which the electron iz instantaneously at rest.
It therefore always satisfies the relation

g =0, . . . .. (3'62)

ds
2. If
L (w.v
(Wsa, way, W1g) = BwW+ (1 -] ( 72 17'-' v (3'71)
| (Wriy Wagy ) =—B[VX W],
and w,,= —w,,, Wy, is an antisymmetrical tensor transformed

like %), and having zero components (0, s, wy) and com-
ponents (wg, Wy, W) equal to w in any system in which the
electron 18 instantaneously at rest.

It therefore always satisfies the relations

P
Pd.t: _

8 o

wh 0, . . . . . (372)

which are equivalent to three independent relations.

Whether the electron has a definite rotation or not, i#f.w is
a vector defining in a system of ecoordinates in which its
centre 1s 1nstantaneously at rest,any directed preperty such
as magnetic moment, equations (3-1), (3-3) will appiy and
(3°0) can be deduced, giving @, the rate of change of w re-
farred to a system of coordinates in which the electron is
instantaneously at rest in terms of dw/ds. (3'6) and (3'7)
will also still hold good as well as (3:41). (3°42), of course,
would then have no meaning.

The only part of the sequel for which it is necessary
that w should be an actual angular velocity is § 5, in which
the model of a spinning spherical shell of electricity is
considered.
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4. A first approximation to the rate of change of
direction of the axis of the electron,

Suppose that, to a first approximation, in the coordinate
system (R, 7') in which the electron’s centre 1s instan-
taueously at rest,

L .
f = mE, e e e e (401)

G=2A[H'xw], . . . . . (4£02)

where E', H' are the field in (R, "), —e is the charge, m the
mass of the electron, and A » constant not yel determined.

Then it follows by.(3'5), (3-41), (2'3), expressing d’r/ds?,
dit/ds?, dw/ds in terma of dr/ds, dt/ds, w, E, H, that, to

a first approximation,

1 \
(el

(5% m | ds ¢ 1 ds L (411)
d*t . dr E)
ds* = mc? (ds

which are, of course, eqmvalent to (1'72), remembering that
the electronic charge is —e, and

&= K {-n‘?ﬁﬁ(?"—?;z)}“( ,,'8)(1-—*)m v)v
| (mb; 1%‘3“%3') [v X E] } xw:' . (#'121)

4

This last is considerahly simpler when A = -—, when it
takes the form . me
adwW e ¢ _
d—s_l:{;ﬁ—cﬂ ot T4 ﬁ[v:-:E]}xw]. (4-122)

In this case, to the same appreximation,

W L PR, . ... . (4123)

and

Wouy _ € { Popm Fo o). . . (4124)

ds me

The more complicated forms when A $5¢/me involving v
explicitly on the right-hand side can be found easily if
required.
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“The first approximation equution (4:124) including the
coefficient e/me can also be deduced from the following
assumptions.

To a first approximation :(—

1. The equations of motion of the centre of the electron
are {1°73)
d—l___E.T# = £ - EE? .
ds®  we U ds
9. The antisymmetrical tensor w,, has its rate of change
given by equations that are invariant for Lorentz

transformations.
3. dw,,/ds s a homogeneous linear function of the field

(ﬁ '#r) '

4. dw,/ds contains no terms higher than quadratic
functions of w,,, di”fds.

5. The relation w,,da*/ds =0 is preserved

(i- o d2av N ol Wy dx” . U) '

10y, — -
" ds? ds ds
6. The relation w,,w,,rgt?g*" = coust. is preserved
. dw,
Lo, . . grogm—"0 = )
( ﬂ'rg g d'g

For assumptions 2, 3, and 4 only allow an equation of the
form

& w . -
= — Ii,up- . ﬁr,u:-

ds
whers
KF"" — A.BTJP wﬂ#'i" .B‘-I}d;. WG-F + C,I;’pp +]}¢>pp
dx® da’ dxo daT
FE Ry g~ me+ F Qow T G,

and 4, B, C, D, E, F are constants.

Assamptions 5 and 1 then give A=efme, B=0, =1,
D=0, and assumption 6 gives £ =0, F=0.

Similar agsumptions for w, lead to a similar result. |

The next stage would naturally be to seek the second
approximation terms in egquations (4'11) of motion of the
centre of the electron. There does n«t, however, appear to be
any definite way of finding them as they depend on the
assumptions made as to the constitution of the electron.
As will appear helow, to obtain the observed Zeeman effect
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and first order doublet separation it seems only to be neces-
sary that they should be such that there is some “angular
momentum *’ which is conserved when the electron revolves
in a central field.

Hamilton’s principle does not seem to be applicable as the
kinematical conditions do not seemn to have any meaning for
a variation to an adjucent motion nebt necessarily kinemati-
cally possible. Kquations in a Lagrange form with extra
terms to preserve the kinematical conditions of the usual
form can be obtained. The test of their truth must be
whether they can give higher order terms in the doublet
separation in agreement with experimental results, which,
as 13 well known, are given to a high approximation by
Sommerfeld’s formula. The equations can also be put in
Appell’sform *. Perhaps the assumption that the motion of
the electron can be described in terms of its position at any
time and a single further vector w is oo restrictive.

d. The Abraham spinning electron.

It 1s interesting to see wlat some particular model of a
spinning electron gives for its equations of motion. The
simplest 15 that of Abraliamt, a spinning sphere of elec-
tricity. As Uhlenbeck and Goudsmit pointed out, he showed
that for a uniform spherical shell the coefficient A in equa-
tion (4-02) is efme.

Assume : —

1. The electron is a distribution of charge which, in a
Galilean system 1 which its centre is instantaneously at
rest 1s instantaneously spherically symmetrical and rotating
hike a rigid body with angular velocity w. |

2. In such a system the total coupls and total force on the
slectron due to the external field and to its own field, given
by retarded potentials, are zero.

These assumptions differ from those of Abraham only in
that they imply a Lorentz coutraction of the electron, while
his supposed 1t to remain sphericul in a system fixed in the
““ ether.”

It follows, agreeing with Abraham, that for v=0, approxi-
mately
mf = —eE+ IV (w. H), } . . (D1)

157 . (52)

¥ M. P Aﬁp&ll, Comptes Rendus, 1911, p. 1197,
t M. Abraham, lec. ¢#t.

= ¢l [V XE]+1[wxH],
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where —e is the total charge, lw the magnetic moment, and

dct | D
_.__1__ h E(P]Pﬂ) 1[P1xP‘2]21
I"zc{’f{‘g A R
1

_ - 2
1—36 P-dp.

The intogruations heing over the electron, dp,, dpg olements.
of charge at P, Py from the centre, while ?— (P, —P,)%
For a spherical shell radius «,

2 EE 2 REE Hﬂe
, I — t = m— _._-
e 3 ac* 9 e’ E 3¢’

The terms neglected in (5°1) and (5'2) are terms in df/de,
A’tlde® ete., d*w/dt?, d*w/dt® etc., and squares, products, and

higher powars of f, w and their derivatives, as wall as terms

m the second and higher differential coefficients of the
external field.

It 1s to be noted that if the terms I/ (w. H), ¢l[V % E]

= —[H, depending on the rates of change of the fiald are

left out, the equations (4-01), (4'02) considered above are
obtained with A=e¢/me,

- Further, the term {N/(w.H)} is not that which wonld be
expected to be the force on a small magnet in a non-uniform

field. The latter is I{(w.W)B. The difference between
these expressions

(w. V) H—IV(%.H) = —[w x [V X H]]
= —(lfe)[wx E),

while zero if the eleciric field in the system of coordinates
in whicli the electron is Instantaneously at rest is not
changing, is not usually zero,

This model has disadvantages that seem to deprive it of
any physical meaning.

(1) If I'w=h/dx as wiil be required,
|uw | = (9¢*/4e?) | Tw|
= 200¢,

which seems absurd,
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(2) The term in fw? was neglected in equation (5-1).
This term would represent 2 magnetic contribution to the
mass, and since there would be no corresponding contribu-
tion to the angular momentum, the ratio A=e/mc would be
disturbed. Further, it has been assumed that while internal
forcas constrain the electron so that it always has spherical
shape instantaneously in a system in which its centre 1s at
rest, these forces do not contribute to the total force and
couple in that coordinate system. This will not in geueral
be true for other coordinate systems.

Qince Webster has shown that internal forces can be
assumed which will cancel the magnetic mass *, the second
objection loses some of its force. Moreover, a rapidly
spinning electron would not be expected to remain spherical.
This model is, however, interesting as showing that there is
nothing inherently impossible about the ratio e/mc.

1 think we must look towards the general relativity theory
for an adequate solution of the problem of the “structare of
the electron *® ; if indeed this phrase has any meaning at all
and if it can he possible to do more than to say how an
olectron behaves in an external field.

5. The secular change in the dircclion of the axis of an
electron revolving tn an orbit.

Tt makes no difference which of w, w*, w,, is used to find
the secular change. If the electron revolves under a central
olectric field Ze/»* and a constant external magnetic field H,

from (4°122) approximately
2 ]
o {i H- -~ z vx—r—g] } xw} .« (6°1)

At me mer 2 P

=m[r x v] is the angular momentum of revolution, and
can be supposed nearly constant during one revolution, sa
the secular change in the direction of the spin axisis given

by rotation , _
e 1 2 72
?;E H+ E ?ncg :rs K} n . i- » . (5'2)

where Z/#% is a time mean over a revolution. The oceur-
rence of the factor “1/2” in the second part of (6'1) is due
io the difference between G and dw/ds caused by the rotation
between (R, To) and (Ry, 73). If the expression for G were
taken instead of (6-1) to be dw/ds, as might be done in the

# D, L. Webster, Phys. Rev. ix. p. 484 (1917).
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‘hope that sach “relativity rotation’ would prove small,
then the secular rotation would seam to be

A

2
| Ec' H+ a@f ;ﬁ K, - - - » . (6 3)
or if A=¢/2me, o
e e
: mﬂhl-Zmﬂﬂ'raK. [ » - - (5 d:)

It is to be noted that, for o Coulomb field, (£ independent
of »}, =~ - |

ig equal to_the rate of precession of the perihelion of the
orbit in its own plane due to the Sommerfeld relativity
effect.

The secular change in the orbit will be the relativity plus
screening precession in its own plane, the Larmor precession
of its normal avout the external magnetic field, and the effect
of the unknown second order terms in equations (4-11), Tf
there is to be any “angular momentum > that is conserved
at all and the effect is not zero, this effect can hardly be
other than seme small deformation of the orbit and a rota-
tion of the normal proportional to w. That is, the change in
direction of the orbit normal will be a rotation of the form

e
-E—mEH-l-wW, I ()
where w depends on the shape and size of the orbit anly,

In the absence of external field the equations giving the
secular change in plane of the orbit and in w would then be

aw - .
= Eﬁf ( Exw],

>
dX )
_EE- = ﬂ'[wx K],

so that | ©
d

K+ (K/a)ww is what i1s secularly unchanged. If and
ouly if (K{¢) = is the same for all erbits, can this be divided
into the angamlar momentum of the orbit and an angnlar
~momentum independent of the orbit to be attributed to the
electron.
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If (K/o)ww=0Q, it would be netural to call Q the
angular momentum of the electron, (6'5) becomes

s—H+ %02 . . . . . (66)

and the equations to determine secular changes of the orbital
plane 4nd’ eléctfonie axis are

df} é o
= [("‘H‘*’dffx) xﬂ] , . . (671)

me

%,:[(Eﬁn-p-%ﬂ)xK] . . (672)

It iz to be noted that using the equation (5 1) obtatned
from the model of the Abrabam electron and averaging just
gives (6°72) with Q=1w.

IF mfy= —eE,+{Jefme)(w.V)H; is used instead of

(5:1),
adK e o !

2nce

would be obtained instead of (6:72), However,as K+2/w
would then, in the absence of external field, be conserved, it
would be natural to put 2Jw=0Q and still obtain (6:71),
(6:72).

The form of these equations depends only on that ot (6:2)
and on thers being an ‘‘ angular momentum ” secularly con-
served in the absence of external magnetic field of which
part is the ordinary angular momentam of revelution and
part, constant in magnitude, can be assigned to the elactron.

7. The application of the correspondence principle to
obtain approximate term values.

In order to compare with observation, the term values that
would be obtained for an electron moving in central electric
field Ze/r? under a small external magnetic field H will be

obtained.
The first approximation will be the Keplerian ellipse, the

term valucs being

RA?
- =5,

where R is the Rydberg number, » the total quantum
number,
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Next the orhit precesses in its own plane with the
Sommerfeld relativity precession giving the term
31 1
sap ol v
2R (4 nt ?13.4:)’
where
2= 2mwe’fch = T720.10"% and R2*’ZYa%%? = o/2me,
whila the normal to the orbit and the spin axis precess with
angular velocity

J, where T=K+0

a
K
about the direction J, while J precesses about H with angular
velocity
e . {0.J) ¢ K.J
R E-mrf:H( J )"
since for smull H, (6:71), (6°72) give firat

dt &

IX _ o
di K

and then, averaging over the first rotation,

dJ e [H::-::J]{QJ;J)‘F € [HXK](E'J)-

dt T me 2re J2
Whether H 13 small or not equatiuns (6:71}), (6°72) are
just those which would be obtained if the systein were
amiltonian with perturbation function, in addition to the
Sommerfeld relativity correection,

F=2.(R.Q)+ ~ (H.Q)-

me 2me

(Ix K],

e

(H.K).

Thus in any case, term values #Jch will give the line
frequency differences that correspond to eguations (6°71),
(6°72), where # is the mean value of F over the motion.

For H small, writing K=44{27, J=jk{2m, Q=rk{2x,
(J.H)/H=mh/27, and expressing the eosines in termns of
k, 7, 7y and m, the term value is

2 Ly 0 2y g2 24 53 18
1{_;-' il fr.ﬁa_ (e([]mfa{i-}-.} r fi‘(r+j. }L)}},

ch Dpp D T Ome/ 2 2;* ' 27*
1. e.
9 L2 e O (k2442 — gt (r? + j2— J2)
sp.a ]l } Uy J J }
“ike { 2ndfd e { 247 +2 2

Phil. Mag. 8. 7. Vol. 3, No. 13, Jan, 1927. C
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This gives, collecting all the terms, term value

R32 t.’l 1 1 4 -’? __kﬂ___i..ﬂ

ool ) )

2 o i
+m——*{k+? ["g‘i‘gj k*) . (71

For Q=rk/dm, r=

Stnrtlng from the treatmﬂnt of the motion of a particle
in a (oulomb field due independently to Pauli and Dirac,
Heisenberg and Jordan (loc. cit.) have sh{}wu that on the new
theory the above formula must be replaced by

RZ? 3 1 1
~ S AR (G )
) JO+ D ~k(k+1)~r{r+1)
+ZR;1:2( ‘?nafc(k+$j(fc+l) )
4 O (£(k+1)+j(j+ 1) —r(r+1)
KR 277 +1)
Lot )+ + 1) —k(E+1))
2(j+1) f
(7-2)
where r=4

n=1, 2, 3 ...
k=0, 1,..(n—1)
j=k+ % or k—1% unless £=0C, when y=4}
m=-—7 —t+1,...,0,..,7-1,7
except that they have not proved that the third term
ZiRz ﬂ(?(.?+l) f(“])'-?‘(*‘ﬂ))
2ndk( e+ 3 )(k + 1)

takes the form it should for S-terms, i.e. 2=0, j=1=1,
V1Z.

1
Q?Lg(k-i-g. « s a e a (7'3)

The last term of (7-2) gives the anomalous Zeeman effect
correctly.

If the form (7'3) be granted for the S.term, the second
and third terms give the “ relativity  fine structure correctly
according to Uhblenbeck and Goudsmit’s scheme with the

2Rt



of an Electron with an Axis. 19

observed doublet separation. In fact, it Z=1 these two
terms reduce to

31 1

P22y D S
Ra 5{4# w8k + 1)
3 1 1 .
2 — = e = —_— ——--1'
Ra*{ % o— b for j=k—}, kD,
In weneral the coefficients Z of the different terms in {6°2)

will be affected by different screening constants as they arise
as averages of different expressions. In any case the douhlet.

separation, the difference of the term values for the same
n, k, and different j 18
AR nPk(k+ 1),

It is to ba noted that if instead of the correct expression
(6°2), involving the kinematical rotation of the axis discussed
above, exprassion (6'3) had been used, thie anomalous Zeeman
effect would have been obtained correctly, but twice the
observed doublet separation ; if expression (64}, the correct
doublet separation but a normal Zeeman effect.

Finally the value Q=~Ah/4r is necessary for doublets to be
obtained (as against triplets, ete., Heisenberg, loc. ait.)-

} for j=4k+3,

8. A summary of the logical train by which the Goudsmit-
Dhlenbeck theory connects the anomalous Zeeman effect
with the optical and relativity doublets and accounts jor

them both as manifestations of the magnetic properties of
the electron.

Starting from the idea that the anomalous Zeeman effect
may be explained by the electron itself having a magnetic
moment, it is seen that Landé g-values different from umty
can be obtained by supposing that the axis of the electron
precesses about a magnetic field with angular velocity other
than the Larmor rotation. In fact angular velocity efme,
twice the Larmor precession, must be assumed. If it be
assumed that it has such a precession about the magnetic
field in a system of axes in which its cenitre i1s instan-
taneously at rest, the secular rate of change of direction of
*+s axis when it revolves in an orbit can be found. Assuming
that there is some total angular momentum that is secularly
conserved, that which the eleetron itself adis to that of the
orbit having magnitnde A/, the secular motion of the sys-
tem can be found, An approximate formula for the doublet
and Zeeman effect separations follows. The new quantum
mechanics of Heisenberg transforms this into a formula

C2
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which fits the observed doublet separations and Zeeman
effect exactly, as far as first order terms in the relativity
correction are sufficient.

In conclusien, I wish to express my appreciation of the
encouragemsnt and help of Professor Bohr and Dr. Kramers.
My thanks are due to Dr. Pauli and Dr. Heisenberg for their
helpful criticism,

Universitetets Institut for Teoretisk Fysik,
Copenbagen.

Note added later.

Since the above was written Frenkel has pnblished a
paper ™ in which he shows how the consistency of the
Zieeman effect and multiplet structure can be obtained from
a similar Lagrange function with the same kinematical
conditions. (372, 1'02.)

Perhaps I may be allowed to state a little more fully than
above the position as it appears to me. The difficulty is that
if we use Hamilton’s principle we must define or take as
defined varied motions in which the kinematical conditions
are not satisfied, and the eyuations cannot be interpreted in
the ahove way as representing a rotation in the ordinary
sense. Kquations for the variations of the * velocities corre-
sponding to quasi-coordinates” twy, or their equivalent must
be assumed in the torm

Bdw};p — daw!_;y +gar(3w‘;a‘der“a?wluu'Ber), (9'2)

where dwuy means wuwds, and Swy. are the independent
variations, if the analoyy with ordinary mechanics is to
remain. ““True coordinates” giving rise to (9'2) can be
found as a kind of formal extension of Eulerian angles
(e. g. the equations (9°5) below with dty» replaced by wy, ds
would lead to (9°2)), but there seems to be no physical inter-
pretation of themn. I have tried to use as Lagrange function,
originally obtained in connexion with the Abraham electron
model,

da dre, e, da¥ A |
L= —%mgpu s E + ﬂ k_,u. Eh— + %pruwn'rg”ﬂgp'r - :j wppf'm'.
(9°3)
If A= _g{*‘ the kinematical conditions are antomatically

me
satisfied to the first order—as the argument given above

* J. Prenkel, Zeit. fiir Physik, xxxvii, p. 248,
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shows. As we have already contemplated motions not satis-
fying the kinematical conditions, it is natural to see what
happens if they are discarded altogether. The equations
then take the wonted Hamiltoniun form, and the usual
methods of solution can be applied safely at any rate to the

first oxrder. .
Frenkel uses a Lagrange function equivalent to

e .da" A
L= Ek,u dﬁ' +&wal1’w”fg“dy"f t+ E H’P""F‘“r'

The change of sign in the last term may be brought about
by denoting by wuy what I have called sy, or by —e what
I bave called e. Use of the kinematical conditions, which is
now necessary if nonsense is to be avoided, leads him to hrst
order secular equations identical with those obtained in §6
of this paper.

The following results more general than those in § 3 which
I obtained at the same time may be of interest.

We can suppose the electron’s configuration te be deter-
mined by giving the position of its centre, a,, and the
orientation of a (alilean coordinate system £ with origin at
its centre, which can be described as in (3-1), (8-21) in terins
of 8, ¢, ¥, v; B=(1— v¥/¢*)~%, where v is not now neces-
sarily the velocity of the centre. Thus

EF- == AF1r(ﬂ?p'—‘mpu),

where A", depend on @, ¢, ¥r, v. After interval ds,
| Ep'f — AFFF(R;U _ ﬂfpﬂr) - J&F"p-’yﬂ-
Defining #*' by
& = Aty

it follows that

‘yl-l-r‘ _— dg'ﬂpyv_l_yn“j
where df,* may, without prejudice, be called the * rotution ™
of the electron. It is easily shown that

Sdte, = dBt*, 4+ 8L dpe, —dE 880 . . (94)

it 8, ¢, \r, v be regarded as (six) * true coordinates” capable
of variation independently of 4%, while

(dlas, Ay, AC2e) = B dtH '(1;8) v(ds. v} + (I;B) (VX dv],

1 —
-vE

P) v(v.dv),
(3:5)

(@ o, At = — Blv—B v x dt] + £
where tf{ 18 gi"i-"ﬂl'l 'by (‘322}
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The condition that if Initially
dav
(6v, B) =

this shall continue to hold is

dxV d{,,'i‘ . d*zv

ds ds  ds¢’ " " (9°6)

which are four independent conditions replacing (3'72),
(1-02).
If these hold the equations reduce to those of § 3, with

d Y 1 (dx? df’m” da™ dﬂ;t:_’_’}
ds Tl d de T ds ds [

If thig picture is adopted, d&u., with (9:6) as kinematical
conditions, would seem to replace wuyds as the fundamental
rotation tensor, as the former retains some physical meaning
when (9-6) does not hold (in which case wyu, might perhaps
be defined hy (9°7)) and on this picture d&.. satisfies (9°4),
while 1wy, does not in general satisfy (9°2). XEquations
(9-6) do not seetn to be suitable to be kinematical conditions
connected with a Lagrange function.

Taking a Lagrange function of the form (9-3), d¥../ds
replacing wuy,

(9:7)

da* da¥ e, da*

—_— i l -
L b s ds T r:mI d
d;' rdgn'p - le (thv
_.1_ 'u..___ o lfl_l o F L "
i 9T o B (08)

equations (9-6) are approximately satisfied better than (3-72)
(1-02) with (9-3). To the first order this Lagrange function
and the corresponding Hawiltonian function seem to be
suflicient.




