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It is a characteristic of the new field theory that if the above
equations form a satisfactory solution, then another satisfactory
solution is

gii’ = fij(kar, kxz, kxs, kxg)  (k=constant),
gij =fij(kxy, kxs, kxs, kxs) (k=constant),

representing a different physical reality. In addition, if g;; and 8ij
satisfy certain conditions which Einstein gives for free space at
(%1, %2, 3, ¥4), then g;;/ and gU’ satisfy the conditions at
(kxl, kxz, kxa, kx4). )

Consequently, in the new solution, as in the original one, there
are three, isolated, non-free-space, space-time regions, representing
three material bodies in motion. Taking the three coordinates x;,
%2, and x3 as ordinary Cartesian spatial coordinates and x4 as the
time, it can be shown by taking successive space-time sections at
constant time that the second set of three bodies are similar in
shape to the original bodies, 1/% as large in linear dimensions, 1/
times as far apart, and have an acceleration % times as large as the
corresponding bodies of the original example, at time £=0.

In Einstein’s theory, the formula for charge density is

1123 = dglg/dx3+dg23/dx1+dg.§/dxz,

and it can be calculated immediately from this equation that a
charge on a body in the second example is 1/k% as large as the
charge on the corresponding body of the first example. One of the
bodies remains uncharged; since its acceleration is % times as large
as before, and the direction of acceleration is unchanged, the
gravitational field of each of the charged masses at the uncharged
mass must be & times as large as before. Since they are 1/k as far
away, their masses must be 1/% as large as before to account for
their gravitational effect. Since their accelerations have multiplied
by %, the force on each of the charged masses is the same as on the
corresponding body in the first example. These forces are (1) the
Coulomb force of each charged mass on the other, (2) the gravi-
tational force of each charged mass on the other, and (3) the
gravitational force of the uncharged mass on the charged bodies.
Since the charged bodies have 1/k times their original masses and
are 1/k as far apart, the second force is the same as in the first
example. Therefore, the sum of forces (1) and (3) must be the
same as before. Since the mass and position of the uncharged body
were arbitrary, both forces (1) and (3) must be individually the
same as previously. But the charged masses bear charges 1/£2 as
large as originally and are 1/k times as far apart, so that the
Coulomb force (1) should be 1/%2 as large as originally, and the
theory leads to a contradiction with Coulomb’s law.

A more general discussion and criticism of this theory will
appear in a forthcoming article.

* Present address: Tompkins Corner, New York.

A Comment on a Criticism of Unified Field Theory
ALBERT EINSTEIN

Institute for Advanced Study, Princeton, New Jersey
(Received November 12, 1952)

R. C. P. Johnson’s! argument touches upon a point of view of

fundamental importance, which deserves a detailed dis-

cussion. In order to bring out the essential point, I will first bring
up an analogy to the case at hand.

Question: Are the laws of the electromagnetic field invariant
with respect to a change of sign of the electric charges, or, equiva-
lently, of the electromagnetic field components? One is inclined to
answer this question negatively, on the basis of our empirical
knowledge. For, if we find a solution representing an atom with a
positively charged nucleus and negatively charged surrounding
particles, then there exists also a second solution for which the
nucleus is negatively charged, and the particles around it posi-
tively charged, in contradiction to empirical results, according to
which the nucleus is always positively charged; hence, one con-
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cludes that the equations do not possess the invariance property
stated above.

This conclusion, however, is unwarranted. In fact, suppose the
laws do possess this invariance property; it is possible that the
predominance of nuclear charges of the one sign is due to the fact
that configurations of opposed charges are unstable in their
interactions. This would lead to a situation in which the one sign
for the nuclear charge is predominant. A consideration of the
mathematical possibilities shows that this alternative explanation
(in which the laws possess the above invariance) appears more
plausible.

I now turn my attention to the problem in which we are
interested here.

In order for a system of field equations to be acceptable from a
physical point of view, it has to account for the atomistic structure
of physical reality. This comprises two general characteristic
features:

(1) the quasi localization of mass (i.e., energy) and electrical
charge;

(2) regions of space corresponding to a “particle” have discrete
masses and charges. That is to say, if there exist elementary
solutions of the equations which depend upon a continuous
parameter, then the field equations must prevent the coexistence
within one system of such elementary solutions pertaining to
arbitrary values of their parameters. If a theory does not possess
these two features, that is, if these features do not follow as
conclusions from the theory, then the theory is inadmissable.

We now separate all conceivable systems of field equations into
two classes, according to whether the individual equations are
“homogeneous with respect to degree of differentiation” or not.
By ‘“‘homogeneous” we mean a type of equation such as is ex-
emplified by the gravitational equations of empty space (R;x=0).
The R;; consist of an aggregate of terms, which are either linear in
the second derivatives of gix or else quadratic in the first deriva-
tives of g;x. We then say that R;x is “homogeneous (of second
order) in differentiation with respect to coordinates.”

It seems to me that all relativistic systems of equations, which
have a unitary structure, i.e., which are not composed of logically
independen t sets of terms, possess this property of homogeneity;
this applies also to the system of equations which I call “gener-
alized gravitational theory.”

Now it seems that every such homogeneous system of equations
must be incompatible with the requirement (2) given above. Thisis
because any homogeneous system of equations possesses a family
of solutions which depend, in a continuous way, on a parameter k.
This is, in fact, the property which Johnson has used in his
argument.

Let the field variables be denoted by g for short, and let g(x) be a
solution of the field equations; then also g(kx) is a solution for any
value of £ We refer to such a manifold of solutions as a family of
“similar solutions.” What is physically important here is the fact
that both the mass and the charge of a “particle” vary continu-
ously with % (all solutions being imbedded in the same Minkowski
space). It would seem then that such a world, built out of solutions
with continuously varying % values, violates the requirement (2).

However, the conclusion is based on the assumption that such
solutions, with arbitrarily differing values of %, can coexist in the
same world, without destroying each other through their inter-
actions; whereas, it could be, for example, that the interaction terms
would introduce inadmissable singularities into the field (this is
what happens in the static case of two bodies in the theory of pure
gravitation). If, however, the field equations exclude the possi-
bility of coexistence of similar solutions in one and the same
world, such an objection to the theory can no longer hold;
Johnson’s argument cannot be carried out then, for it too is based
on the assumption of coexistence of similar solutions.

The above considerations show how careful one has to be in
using general arguments to form a reliable judgment about the
admissibility of a field theory from the empirical point of view.

1 C. P. Johnson, Jr., preceding letter [Phys. Rev. 89, 320 (1953)].



