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It 13 proposed that the electron should be considered classically as n charged conducting
surfage, with a surface tension to prevent it from flying apart under the repulsive forces of
the charge. Such an electron has a state of atable equilibrium with spherical symmetry, and if
disturbed 1tg shape and size oscillate, The eguations of motion are deduced from an action
principle end & Hamiltonian formalism is obtained. Tho energy of the first excited state
with spherical symmetry is worked out aceording to the Bohr-Sommerfeld mothod of quanti-
zation, and iz found to be about 53 times the reat-energy of the electron. It is suggested that
this first excited state may be considered aa a muon. The present theory haa no electron apin,
30 it cannot agree accurately with experiment.

THE MODEL

The concept of an electron of finite gize:is an old one, first proposed by Abraham and
Lorentz. It is the most natural concept that makes the total energy of the Coulomb
field of the electron finite. |

Recently, new evidence has appeared for the finite size of the electron by the
discovery of the muon, having properties so similar to the electron that it may be
counsidered to be merely an electron in an excited state. If one works with a point-
charge model of the electron, there is no place in the theory for the muon. However,
if one supposes the electron to have a finite size, with no constraints fixing the size
and shape, one can arrange that the variations of size and shape are stable oscilla-
tions about an equilibrium position, and then one can assume that the lowest
excited state is the muon.

The present paper is concerned with developing the simplest model of this kind.
The electron is assumed to have a charged conducting surface. Outside the surface
Maxwell’s equations hold. Inside the surface thereisno field. To prevent the electron
from flying apart under the Coulomb repulsion of its surface charge, a non-Maxwel-
lian foroe is assumed of the type of a surface tension. So the electron may be pictured
as & bubble in the electromagnetic field.

The classical equations of motion for this model will be worked out. They are
applicable also to several electrons in interaction, provided no two of them ever come
into contact. |

Lees (1939) has set up a somewhat similar theory. Lees takes into account also
the pravitational field, and instead of a surface tension he imposes constraints
on the shape and size of the electron, which rule out the possibility of excited
states, :

A convenient way to secure the correct boundary conditions at the surface of the
electron is to take the potentials to be zero inside and continuous at the surface.
With several interacting electrons one can take the potentials to be zero inside all
of them if one gives up the condition 3.4+ fcx# = 0. The boundary conditions for the
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field quantities just outside the surface are then the usual ones with a conducting
surface, namely, the tangential components of the electrie field and the normal com-
ponent of the magnetic field are zero in a frame of reference for which the element of
surface is instantaneously at rest.

THE ACTION PRINCIPLE

The squations of motion should be derivable from an action principle in order that
they may be suitable for quantization. There should be just one comprehensive
action principle, giving both the field equations outside the electron and equations
of motion for the surface of the electron. The latter will provide equations of motion
for the electron as a whole, as well as equations for the changes in the shape and size
of the electron.

We shall work with a four-dimensional relativistic picture in which the surface
of the electron appears as a tube with a three-dimensional surface. The action 7
consists of two terms, a four-dimensional integral I, extended over the space out-
gside the tube and a three-dimensional integral I, extended over the surface of the
tube. The space inside the tube contributes no action.

We take I, to be the usual action for the Maxwell field,

4ﬂ- —_— "‘"J dei:ﬂ,

Fo,=4,,

where £ , denotes offdx*. We want I, to lead to fﬂrcea like a surface tension, and we
got this by taking it to be a constant 1311]1&3 the three-dimensional ‘area’ of the
tube.

To have an action principle, we must express the action Z in terms of variablea ¢
which describe the physical conditions for all space and time and which are such
that, when small variations are made in all the ¢'s, 67 is a linear function of
the 3¢’s.

The most obvious way of choosing the g’s is as follows. To describe the surface of
the tube, introduce parameters u,, 4y, %, to gpecify a general point on it and then
take as ¢'s the four co-ordinates ##{u) of each point on it. Take alsa the four potentials
4, throughout space-time as ¢’s. There are then sufficient ¢’s to fix the physical
conditions completely, but 41 is not a linear function of these 8¢’s, If one makes a
variation dz#(u) corresponding to the surface being pushed out a little, 87 will not
be minus the I for — dx#(u), corresponding to the surface being pushed in a little,
on account of the field just outside the surface being different from the field just
inside. Thus this choice of ¢’s will not do.

One can avoid the difficulty by working with general curvilinear co-ordinates
z#. Let the surface of the tube in terms of these co-ordinates be f(x} = 0, with
J(x) > 0 for the region outside. We now do not change f{z) in the variation process,
but produce an arbitrary variation of the surface by varying the co-ordinate system.

To get a convenient way of describing the co-ordinate system and its variation,
introduce a second co-ordinate system 2 which is kept fixed during the variation
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process and use the functions y4(x) to describe the z co-ordinate system in terms of
the ¥ co-ordinate system. To keep the two systems distinet, capital suffixes will
be used to refer to the y system and small suffixes to refer to the x system. For

simplicity, we take the y system to be rectilinear and orthogonal, so that the metric

for the z system is
v Qv = Yo, a0 | (1)

We now take ag ¢'s the 4 (x) and y*(x) for all ’s for which f(x) > 0. These ¢’s,
together with the fixed function f(x), are sufficient to determine the equation of the
surface relative to the y system and the field outside the surface relative to the
y system. They thus determine everything of physical importance. They also
determine something not of physical importance, namely, a curvilinear system of
co-ordinates outside the surface, This is a complication, but it does not do any harm
to the action principle. It appears to be unavoidable if one is to have 87 linear in the
dg's.

We may in prinoiple choose the function f to be anything that can be fitted in
with a confinuous curvilinear system of co-ordinates x# for the space outside. If
there is only one electron, the most convenient choice is

f(ﬂ?) = mls (2)

which can be fitted in with a deformed system of poler co-ordinates,
The boundary conditions are

4, =0 for f(x)=0. (3)

They do not involve any derivatives, so they cannot appear as equations of motion
following from the action principle. They must therefore be counted as congtraints,
whose validity is preserved during the variation process. With the choice (2) for
f, they lead to the field conditions just outside the surface

Fﬂb = U, - (4)

where @, b take on the values 0, 2, 3, here and in the future.
Expreased in terms of the new g¢’s with the choice (2} for f, the action is

1
iml, = 4 m:::ngﬂﬁgMF#Pchrd*% (6)
47l = — f M datda2da?, (6
ol =0

where — J2ig the determinant of the 7. and 577 is the determinant of the g, 80 that
M = J(— g, (7)

@ 18 & positive constant that determines the equilibrium size and mass of the
electron,
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THE EQUATIONS OF MOTION

The variation of 4 (x) and y*(x) leads to the following, where four-dimensional

integrals are over the region z! > 0 and three-dimensional integrals are over the
surface z! = 0.

dndl, = — % fJ igteg K, 0F .+ g*F, F, 09" + }F, Frg=fly, .t A%z
= [ T(Po84,, + A(E P g —F,, Froget) By, )
= f JUFr3A, A+ (F2FH—3F  Fevgel)y, Syt dx
= — [ 79 04, + [TE o 4, Frogt)y, ] 4y} d'o
+IJ(FF“Fﬁ1—iF#pFF”g“1) ynpﬂﬁyﬁdx“dxﬂd:cﬂ | {B)
with the help of the bnﬁndary condition 64, = 0, Let ¢* be the reciprocal matrix

$0 ¢, Then
dmdl, = — tw| Mc®dg,, dxdx2da’

= mJ(Mﬁ“byﬂlu},bﬁyﬂdx“dn;z da®, (9)

Equating to zero the coefficient of §4 , for 2! > 0in (8), we get
(JF#2) =0, (10)

These are the Maxwell equations for the outside gpace. Equating to zero the coeffi-
cient of oy for ! > 01in (8), we get

[J(FﬁﬂFFﬁ - iF#FFﬁvgczﬁ‘) yﬂ,m] W B 0.
Multiplying by ¥* , and using (1), we can reduce it to
[J(F, Fef—3F , Frgr) g, ], p— YW F2FH —}F, Frgil)g., , =0,

or (JE, Frf) s LI EF, Fr) ,—JE2Frig . =0,
With the help of (F, Fr) ,=2FHF , —2F=Frig ,
it becomes F (JEEE) g+ $JFHF(F,, —Fy, ,—F,p ).

1t is thus a consequence of the Maxwell equations and does not give us anything
new.

Finally, equating to zero the coefficient of dy* on the surface in (8) plus (9), we get
JEFE — 1B, Fogi)yn o+ o(Mo®yy o), = 0.
Multiplying this by y*, ,, we get |
J(F, , Fit — LF,, Fo g} + w(Meg,,) , = o McPy, 4>,

— %mﬂcabgﬂh.p
=wM ,
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For p & 1, it reduces to 0 = 0, on account of the surface conditions (4). For p = 1
it: gives, with the help of

ot gab_glaglb’f 11: (l 1}
E P = wd (MY ™) 5+ M 1}
= wJ 7 Mg'efg't) . - (12)

Thig is the equation of motion for the surface of the electron. The left-hand side
may be written alternatively as 2 F,, F#*, on account of the boundary conditions (4).

The right-hand side has a simple geometrical meaning. Apart from the factor witis
just the total curvature of the surface.

THE SPHERICALLY SYMMETRIC SOLUTION

Let us apply the equation of motion {12) to a spherically symmetric electron
whose centre is at rest, with no incident radistion. Let o be the radius of the electron,
a function of the time {. We use polar co-ordinates and take z! = r—p, 2% = 8,
x? = ¢, so that the equation of the surface is 2 = 0. Then

ds? = di? — {dx* + pdt)® — (x' 4+ p)2 dO%— (' 4 p)* min2 G d g2, (13)
giving Joo=1-0% gu=-1, gp=—pF
020 = — (' 4+ p), ga = — (a4 p)*sin28,

with the other components of g, vanishing. This leads to

d = (xt-+-p)aeind,
M = (1— 2% (xt + p)25in 8,
g =1, gt =-{1-p%, g%= —p,
g = —(xt+p)%, g¥ = — (2 +p)2ein-i4.
We now find | |
1/ Mgx 1 o +p)p , (1—p% 3

j( gt )“ﬂ_ = ( +P)2§J}, (1 oyt T (zL + p)? Ot

d p 2
TR -

(x' + p)?

on the surface 2! — 0, Outside the electron the field is merely the Coulomb field,
50 just outside the surtace ¥, F'#¥ = ¢%fpt. The equation of motion (12) thus becomes

d 5 ? 2

T Bt (1 (14
Putting g = 0, one gets for the equilibrium radius @ of the electron
0? = e?{4m. (15)

. For an electron instantaneously at rest the total energy E consists of two parts, the
electrostatic energy of the Coulomb field, namely £%/2p, and a surface tension energy
proportional to p?, say fp?. Thus

E = %20+ Bpt. (16)
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The minimum value of £ must occur when p = a, 8o
e2({2a2 = 2fa,

giving § = @. We now see that in the equilibrium state the surface energy is half the
electrostatic energy. Thus the fotal energy is 3e%/4a, which must equal m (with

C = 1): BO f == 362/4’”!;. (17)

For small oscillations about the equilibrium state equations (14) and (15) give

3 _ —¢ _ —_
ﬁzﬁi_ﬁ_%{(Hu) __(1+u) }

Pt p a a 7
= —6(p-—a)a’ (18)
The frequency v of the oscillations is thus
2mv = \J6/a.

The energy of one quantum with this frequency is
hv = J6%ja = (4./6/3) miife? = 448m,

This is of the right order for the energy of the muon. However, the one-quantum
oscillation is by no means a small one and the approximations we used in deriving
(18) are not valid for it. To get a better theory we need the Hamiltonian formalism.

THE GENERAL HAMILTONIAN

Going back to the general motion, we shall pass to the Hamiltonian form by the
standard method. To simplify the work as much as possible, we shall consider only
co-ordinate systems x# for which x% = %% This is permissible because it can be com-
bined with (2) without imposing any restriction on the surface of the electron.

The formuls (1) now reduces to

gﬁ“-" — 939‘24‘93,#311?.»- (19}
(The suffixes, R, r, ¢ take on the values 1, 2, 3.) From

ge* = (Ot {dy,) (dx”[oy™)

we geb g% = 1, which shows that J = K, where — K2is the determinant of the ¢,..
The dynamical co-ordinates are 4 ,(z), y*(x), where » stands for 2!, 22, «® with
z! > 0, together with the surface variables y#(x2, 23} with 2! = 0. Their derivatives

with respect to % namely 4, ;. y* ; are the velocities. The Lagrangian is
1
4l = —— KF Frdiz—o M dx?dz? (20)
¢ x>0 al=()

expressed in terms of these co-ordinates and velocities. |
To introduce the momenta we vary the velocities in L, which gives

478l = J‘K {Feo8A, o+ F 2 Frlyq o0y o dPr— mfﬂ:fc““y R.a OYE sda?da?,

We set 8L = '[ (BroA, o +wpdy® o) A% +IIVR Sy® dzda®, (21)
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so that B4 and w, are the momenta conjugate to 4, and y¥ in the outside space and
Wy, is the momentum conjugate to ¥ on the surface of the electron. B* and wp are
functions of 21, 22, z3 with 2! > 0 and Wy is a function of #® and #® only. By comparing
the two expressions for §L, we find

dnB# = HF""‘“, (22)
dnwp = KE2FP%g o (23)
AWy = oMy, . (24)

We must eliminate the velocities from these equations to get the primary con-
straints of the Hamiltonian formalism. So for es concerns the outside space z' > 0,
these constraints are the usual ones for the Maxwell field referred to curvilinear

co-ordinates 1, x%, z8% namely B — 0, (25)
wpy® o~ B, = 0. (26)
There is also a secondary constraint

B, =0, (27)

which follows from the field equations. From (24)
dnWpy® = —wMc™g, . —g09%). (28)
The right-hand side vanishes for z = 2 or 3, since ¢*® ia the reciprocal matrix to g,,.
Thos Wy 3= 0, WpyR =0, (29)

meaning that the tangential ecomponents of W along the surface of the electron
at any time are zero.

The eonstraints (25), (26), (27), (22) are all first-class, according to the definition
(Dirac 1958). They are associated with the arbitrariness in the gauge and 1n the
system of curvilinear co-ordinates 1, 22, 23,

The Hemiltonian is

H =.“(Bﬂﬂﬂrn+wﬂyﬂ_u) d%+JWRyR,nda:2dx3—L

expressed in terms of the dynamiecal co-ordinates and momenta, It is the sum of

two parts, & volume integral &, over the outside space and a surface integral H..
The volume integral is

nH, = [ R{(FA, ot F,2 P00~ ) + 1F,, Py dte
- f K{Fr4, ,— F,0 P { 4F, Fiv}doz, (30)

The term IKPDAn,r dizr may he fransformed to —d# f br .4,d% with the help of

the boundary condition 4, = 0 on the surface of the electron, and it then vanishes,
from (27). To express the rest of (30} in terms of the dynamical co-ordinates and
momenta, introduce ¢'3, the reciprocal matrix to g,,. It satisfies

" = g7 — 9",
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analogous to (11) with ¢g® = 1. We now have

ErﬂﬂtuFﬂ JF;'H: = (g,em — g,uﬂgmﬂ) (gpﬂ - g;-ngﬁn) Fpu chﬂ'
= F, Frv_2F) Fro,
leading to 4nH, = f{ - 8m2KYg BTB3+ }KereF F_\d%. (31)

It is the usual Hamiltonian for the Maxwell field, referred to the curvilinear co-
ordinates z1, z*, 28,
The surface part of the Hamiltonian is

47 H, = f (47Wpy® o+ wM)dz?ds?

| = J.Mr.:““dxﬂdxs (32)

with the help of (28) with 4 = 0. Now
M2 = gup 035 — F2a° (33)

and is independent of the velocities, but Mc® does depend on the velocities, so some
further work is needed. From (24)

= w? M¥(c")2 — e},

Hence 4 H, =f{167r2WR Wg + w? M 290} dz? 33

=J.{16?TEWR We+ 0*(gondas— Jaa® )}} da?da?, (34)

which gives H in terms of the dynamical co-ordinates and momenta.
We may remove from H, the tangential part of Wy, which vanishes from (29). ¥From

YR, Y¥s,s = —Ors
we get WeWp = —¢"Wryr Wels,e = — € {Wpyr,1)*
Also — K2 = Gpofas— 91 *,
analogous to (33). Thus we get
dmH, =J'{(47TWR Y,/ K)?+ @i (G1Fs3 — Goa »)} da?da® (35)

as an alternative form for .

The total Hamiltonian, given by (31) plus (34) or (35), is positive definite, so there
are no runaway motions for the electron in this theory.
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A SPRCIALIZED HAMILTONIAN

For dealing with an electron whose centre is at rest, or nearly at rest, it is con-
venient to work with polar co-ordinates r, 6, ¢ whose origin is at some fixed point
inside the eleetron. Thus we take

5171=?'—-p, z? =6, $3=¢', (36)

where p is some function of 4, ¢ and # such that r = p is the equation to the surface
of the electron. The quantities p(0, ¢) for a given f now appear as dynamical co-
ordinates. All the previous dynamical ¢o-ordinates yp{x?, 28, 23) hecome functions
of p{9, ¢) through the equations

¥ = (p+ x') cos b,

Yy = (p+2l}sinfcos @, (37)

Y3 = (p+at)sin Fsin ¢, |

The fixing of the x éystem of co-ordinates in this way implies bringing into the

Hamiltonian theory some second-class constraints, which reduce the number of
effective degrees of freedom. Qus of all the g, degrees of freedom, the only effective

ones that survive are those assoclated with the dynamical co-ordinates p(8, ¢).
Their conjugate momenta, (8, ¢) say, must aatisfy

[0, 9), P&, ¢'}] = 66— 8"} o{p~ ). (38)
These relations lead to
[Yr(0, 9), PO, ¢'}] = (Pygtp) 66— ') 8(¢ — ')
= Yp,10(0—8')8(4 — &),
which show that we may take P = Wpy® |, (39)

If one made a transformation of the co-ordinates 2, z?, then £ would be a scalar
and P would be a scalar density, Thus P/X would be a scalar.
With the co-ordinates (37) we find

K = p’sin@,
: (40)
J22F33—Fas® = P2 1p° sin*@ 40 ,%sin2@ 4+ p 421

Thus the surface Hamiltonian (35) becomes
47 H, :f{(riﬂP!p 8in 0)% + wp {p%sin® 0 + p ,%sin20 4 p B dAdg. (41)

THY, SPHERICALLY SYMMETRIC HAMILTONIAN

For a spherically symmetric motion p and P/K are independent of # and .
The equations that express this independence are second-class consiraints, which
further reduce the number of effective degrees of freedom. There isonly one effective
dynamical co-ordinste p left. Its conjugate momentum, 7 say, must be defined by

the atrong equation

q . vﬂl. 26‘3. Al
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in order that (38) may lead to the correct P.b. relation

(P10, 8),71 =80 -0) 83— ) dv"ag ~ 1.

With the help of {40) and the constraints which express that p and P/K are inde-
pendent of @ and ¢, we can deduce the weak equation

g = (P;K)J' K d6dgé
= 47(P(K) p* = 4n.P/[sin 0.

| Substituting in (41), we get H, expressed in terms of the effective dynamical vari-
ablespandy,

4 H, = f (7% + wioiYt sin #dAdg

= 4 {1yt + wiph)i.
To get the total Hamiltonian we must add to H, the energy of the Conlomb field,
which gives H = (92 + w2t +e2/2p, ~ (42)

in agreement with {18) when # = 0.

QUANTIZATION OF THE SPHERICALLY SYMMETRIC MOTION
The classical Hamiltonian (42) suggests the wave equation

i 8y [ot = {(72+ Wity + o2} o, (43)
in which the wave function ¥ is a funotion of p and £, and 7 means —i% 8/0p. However,
there iz some ambiguity, becsuse the operator (32+ %%} may be replaced by
another operator with the same classical analogue, for example,

{7 +iwp®) (g —iwp)}t or  (7+iwp®) (- iwp?t.
The classical theory developed here cannot decide between these possibilities,
With this uncertainty preventing an accurate quantum theory, we can still pet

a rough quantum theory by working with the Bohr—Sommerfeld method of quanti-
zation. This gives for the one-quantum state of radial ogcillation the quantum

condition
h =2 f ndp, (44)

the integral being taken from the minimum to the maximum value for p, so as to
correspond to half an oscillation. The connexion between 7 and p is given by (42)
with H treated as a constant, so

92 = (H —e?/2p) — w2pt
= (e*[da)? {{k - 2{x)? — 24}
from (15}, with x = pfa and k= daH[e? - (45)

Thus (44) becomes 2hfe? =f{(k —2/x)? —xt dux,
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For large values of k the integral is approximately

L3
(k2 — 2t du, (46)
0
i
which goes over into i f (1— A dy — 0-87ki.
{) .
Thus leads to - 2hje? = 0-87i3
giving bk = 158, (47)

One can easily check that this value for k is large enough for the approximation (46)
to be valid.

Combining (47), (45} and (17) we get
H = $km = 53m.

So the present theory leads to a mass for the muon about a quarter of the gbserved
INAass.

The present theory can be only & rough one, because it does not give any spin
to the electron. 1t serves to indicate how one can look upon the muon as an electron
excited by radial oscillations. It gives to the muon the same spherical symmetry
as the electron, so that the ravon cannot disintegrate into an electron and a photon,
and would have only a very small probability of disintegrating into an eleetron and
several photons. To improve the theory and bring in the spin, one would presumably

have to replace the square root in the Hamiltonian by some rational funection
involving spin variables.
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