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In the theory of the electromagnetic field without charges, the potentials are not fixed by the
field, but are subject to gauge transformations. The theory thus involves more dynamical
variables than are physically needed. It is possible by destroying the gauge transformations
to make the superfluous variableg acquire a physical significance and describe electric charges.
One gets In this way a simplified classical theory of electrons, which appears to be more
suitable than the usual one as a basis for a passage to the quantum theory.

1. INTRODUCTION

Classical electrodynamics is based on Maxwell’s equations for the electromagnetic
field and Lorentz’s equations of motion for electrons. 1t is an approximate theory,
valid only if the accelerations of the electrons are small, and attempts to make it
accurate bring one up against the problem of the structure of the electron, which has
not vet received any satisfactory solution. If one assumes the charge of the electron
to be concentrated at a point, one gets an infinite self-energy, which is physically
meaningless, and if one assumes it to be spread through a small volume, as Lorentz
himself did, one gets into great complexities when one tries to treat the acceleration
of an electron relativistically.

People hoped at one time that quantum mechanics would remove these difficulties,
but this hope has not been fulfilled. Models of the electron with the charge not
localized have proved too cumbersome for quantization, and the point-charge model
leads to infinities which are more troublesome in the quantum theory than in the
classical theory. Recent work by Lamb, Schwinger, Feynman and others has been
very successful in setting up rules for handling the infinities and subtracting them
away, so as to leave finite residues which can be compared with experiment, but the
resulting theory is an ugly and incomplete one, and cannot be considered as a
satisfactory solution of the problem of the electron.

The troubles of the present quantum electrodynamics should be ascribed primarily,
in my opinion, not to a fault in the general principles of quantization, but to our
working from a wrong classical theory. To make progress one should therefore
re-examine the classical theory of electrons and try to improve on it. One has a much
better chance of doing this at the present time than one had in Lorentz’s time
because of the information, which gquantum theory has given us, that the Hameltonian
form for the equations of mohon 18 all-vmportant. .

In the present paper a radically different theory for the motion of electrons is put
forward, which is simpler than Lorentz’s from the Hamiltonian standpoint and

- which provides exact equations of motion without requiring any assumptions
about the structure of the electron.
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2. THE ELECTROMAGNETIC FIELD WITHOUT CHARGES

In the absence of charges, Maxwell’s equations for the electromagnetic field, in
relativistic notation, are

oF,,[ox? + OF,, [0+ + OF,  Jox’ = O, (1)

N an,,/axu = 0. (2)

Equation (1) allows one to express the field quantities Z,, in terms of potentials,

according to F,, = 04,[oxr —0A, /éxv_ | _ (3)'

The potentials 4, are not completely determined by (3). They can be transformed
e

to 45, where A% = 4, 08/oxm ~ (4)

for any function 8, without affecting the #,,. Such transtormations are called gauge
transformations.

One can restrict the arbitrariness in the potentials and the extent of the gauge
transformations by introducing the subsidiary condition |

04, fox, = 0. (5)

People usually do adopt this restriction in electrodynamics, but I believe it brings
an undesirable feature into the theory. Ome gets a more interesting and more
- powerful mathematical theory if one does not have it, so that one retains the
possibility of making gauge transformations with § arbitrary.

The introduction of the potentials 4, automatically satisties Maxwell's equation
(1) and allows one to derive (2) from an action principle

SIEdwgdxld%dxa = 0 (6)
with L = —tF, Fr = §(04,[0x*—284,[0x") 0A* o, (7)

Thus equation (2) appears as the Lagrangian equations of motion with the Lagrangian
function

L = fﬁ dx, dx,dz,, (8)

in which the 4, and 04,/0%, at various points at a given time are the dynamical
co-ordinates and velocities. This is useful as a first step towards getting the equations

in Hamiltonian form, as is necessary for a passage to the quantum theory to be
possible.

The usual method of passing from the Lagrangian to the Hamiltonian fails when
applied to the Lagrangian (8), (7}, because the momenta conjugate to the 4, dynamical
co-ordinates turn out to be zero and so cannot be used. A way out of the difficulty
was found by Fermi (1932), who modified the Lagrangian by adding a further term

104,24,
2 0z, oz,

to Z. The modified Lagrangian leads to suitable momentum variables and still gives
the correct equations of motion, provided one uses the subsidiary condition (5).

Thus the substdiary conditron (5) is essentval unth Fermi’s method of putting the equations
v Hamalionian form.
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I have recently (1950, 1951) given a more general theory of the passage from the
Lagrangian to the Hamiltonian, according to which one is not bothered by any
of the momenta turning out to be zero. An old method of Rosenfeld (1930) is also
adequate In the present case. With either of these methods one can very well
work with the unmodified Lagrangian (8), (7) and get from it a Hamiltonian which
is suitable for taking over to the quantum theory. Thus one can build up eleciro-
dynamnuc theory without using the subsidiary condition (5). One gets a more powerful
theory, capable of being transformed into a wide variety of different forms, and so
providing better prospects for enabling one to introduce electric charges in a
satisfactory way. |

The existence of gauge transtormations in the theory means that there are more
variables present in the mathematics than are physically necessary. With Fermi’s
theory the extra variables describe longitudinal electromagnetic waves, which have
no physical reality and may be eliminated by a transformation of the equations, the
gauge transformations disappearing of course in the process. With the theory which
does not use the subsidiary condition (5) the extra variables do not describe longi-
tudinal waves, but can vary arbitrarily with the time. They are thus, to a certain
extent, at our disposal, and we shall see that they can be made to serve in the
description of electrons, instead of remaining physically meaningless.

3. THE ELECTROMAGNETIC FIELD WITH CHARGES

The usual way of introducing electric charges into the theory is by bringing into
the mathematical scheme further dynamical variables describing electrons and
adding suitable terms involving these variables to the action integral. A simpler and
more direct way is to use the superfluous variables in the theory without charges for
the purpose of describing the charges, and not to bring in any new variables at all.
The gauge transformations must then be destroyed, since so long as they remain,
the superfluous variables of the theory without charges must continue to have no
physical significance.

Let us study the simplest relativistic way of destroying the gauge transformations,
namely, by imposing the subsidiary condition

A, Ar = k2, (9}

where £1s a universal constant. We shall see that this condition is the only assumption
we need to make to get classical electrons appearing in the theory.

I'he condition (9) must be imposed on the potentials in the action prineciple
(6), (7). We can take it into account conveniently by adding a term to .Z, to make it

L =~ L1F, Fw 4 IN(A, A%~ k), (10)

where A is an unknown funetion, which may be treated as a further field quantity.
The field equations which follow from the new action principle (6), (10), are

(9) and
/ 0F, [0z, = A4, ‘ (11)
We see that we must identify the charge-current density j, as

’ j‘u = _AA‘;;: | (12)
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and then (11} gives correctly the generalization of the Maxwell equation (2) for the
presence of charges. From (11) and (12) follows the conservation of electric charge

Eljpfaxﬂ = 0, (13)

Equations (9) and (11) are the fundamental field equations of the new theory.
There are five equations to determine the five field quantities 4 , A, so the solution
of the equations is fixed when suitable initial conditions are prescribed.

Let us examine the physical consequences of the equations, In the first place we
see that there exist solutions with A = 0. These obey the Maxwell equations in the
absence of charges. For these solutions the new theory is equivalent to the usual
one, so far as the field quantities ¥, are concerned. The only difference is that the
potentials cannot now be chosen arbitrarily to satisfy (3}, but must satisfy also
(9)—a condition which hag no physical effects since the potentials are not observable.

Let us take a solution with A = G, corresponding to no charges, and make a small
change in it 5o as to bring in small charges, and then investigate how these charges
move. For this purpose we take A in (11} to be infinitesimal. Let ') be the original
field corresponding to no charges. The new field will differ from this by an infinitesimal
which we can neglect. Let 47 be any potentials which lead to the field F© according

w0 FO) = 34*[0a —dA* [0,

The potentials A, of our theory must be connected with the A¥ by a gauge trans-
formation (4), with the function S chosen so as to make 4, satisfy (9). Substituting
for 4, in terms of A% in (9), we get

(08 )0zt + AX) (88 )2z, +.Ar*) = 2. (14)

From a solution of (14) we get a possible motion of charges satisfying the conditions
of the theory by taking j, = — A(@Sows + A%). (15)

The A here can be chosen to be an arbitrary infinitesimal at one instant of time, and
its value at other times is then fixed by the conservation law (13).

The direction of motion of the charges in space-time is given by the 4-vector
dS[ox* + A7%. Now equation (14)is just the Hamilton-Jacobi equation for an electron
moving according to Lorentz’s equations in the field of the potentials A%, provided

we take the vniversal constant k to be connected with the charge and mass of the

electron by b = mie (16)

With equation (14) interpreted in this way, the energy-momentum 4-vector of the

electron 1is p, = edS|ozr
and the velocity 4-vector is

(p,+edy)|m = e(0S[oxr + A%)/m.

This is in the same direction in space-time as the motion of the charges (15). We can
conclude that the new theory requires that infinitesimal charges in a given field shall
move 1n a way which agrees with Lorentz’s equations for electrons moving in this field.
with neglect of the influence of the field produced by the electrons.
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To study the motion of charges which are not small, we may build them up by
making successive infinitesimal changes in the solution of the equations. Each such
infinitesimal change can be treated by the same method as before. We replace
F by F) say, the field in the presence of the already existing charges, express it in
terms of potentlals A%, and arrive again at equation (14). A solution of this equation
provides us with the possibility of changing the charges by dj, equal to the right-
hand side of (15), with A chosen to be an arbitrary infinitesimal at one instant of
time. Kquation (14) can still be interpreted as a Hamilton-Jacobi equation, but it
now refers to an electron moving in the field of the already existing charges. We can
conclude that any infirnitesimal change in the charges must move in a way which agrees
with Lorentz’s equations for electrons moving in the field of the already exisiing charges.

To obtain the Hamiltonian of the new theory, the most convenient method is to
také the Lagrangian (8), (7) and use the equation (9) to eliminate the dynamical
co-ordinates 4, in terms of 4,, A;, A;. One can then use the ordinary method of
passing from the Lagrangian to the Hamiltonian. The momentum B, conjugate to
the dynamical co-ordinate A" (r = 1, 2, 3) is the functional derivative

oL
= ST eny — T

90 B, 1s just the electric field. The Hamiltonian is now

(17)

H = J . aajo dx,dx,dx,— L

f { F Frs_}B Br— (A A3+k2)*CB de, dzc,da,. (18)

4. DIScUSSION

The new theory seems to be adequate for the description of the motion of electrons
when quantum effects are not considered. It describes correctly the motion of
2 beam of electrons in an electromagnetic field, giving the deflexion of the beam by
the field and also, if the beam is a strong one, giving the divergence of different parts
of the beam produced by space charges.

It does not provide a detailed description for individual electrons of the beam in
the way the usual theory of electrons does. Such a detailed description is not needed
when quantum phenomena are not being considered, so it ought not to appear in
a classical theory and it is an advantage of the new theory not to give it. This
advantage shows itself through the mathematics of the new theory involving fewer
dynamical variables, and thus being of an essentially simpler character.

The new theory requires a continuity in the dependence of the velocity of an
electron on its position in the beam—a continuity which is degeribed mathematically
by the condition that one solution of the Hamilton-Jacobi equation fixes the motion
of all the electrons. One can introduce oscillations of short wave-length into the
Hamilton-Jacobi function S, to give rise to fluctuations in the velocity of an electron
according to its position in space, but such fluctuations are much restricted compared
to those allowed by the usual theory, and one cannot have electrons with widely
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different velocities arbitrarily close together. This limitation is a necessary con-
sequence of the reduced number of dynamical variables in the new theory. As far
as I can see it is not in disagreement with classical experiments.

An important feature of the new theory is that it involves only the ratio e/m, not
e and m separately. This is what one should expect in a purely classical theory. The
existence of ¢ should be looked upon as a quantum effect, and it should appear in
a theory only after quantization, and not be a property of classical electrons.

In the usual electrodynamic theory one takes a first approximation by putting
¢ = 0, so as to get electrons which do not interact with the electromagnetic field,
and one then introduces the interaction as a perturbation. This is not possible in the
new theory, where one does not have any e to put equal to zero. The electron of the
new theory cannot be considered apart from its interaction with the electromagnetic
field.

The theory of the present paper is put forward as a basis for a passage to a quantum
theory of electrons. To make this passage one will presumably have to replace the
square root in the Hamiltonian (18) by something involving spin variables, and cne
will also have to bring in the Fermi statistics for the electrons. This may be a difficult
problem, but one can hope that its correct solution will lead to the quantization of
electric charge and will fix e in terms of A. One can also hope for an improvement in
the situation with regard to the infinities, since in the new classical theory questions
of the interaction of an electron with itself no longer arise.
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