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. Introduction.

The relation of matter and the electromagnetlc hehl can be mterpretedv

from two opposite standpoints :—

The first which may be called the wniterian sfﬂndpmwl assumes only ole

physical entity. the electromagnetic. field. The particles of ma.tter are con-

sidered as singularities of the field and mass is a derived notion to be.expressgd .

by field energy (electromagnetic mass). .

The second or dualistic standpoint takes field and particle as two essentially
different agencies. “The particles are the sources of the field, are acted on.by
the field but are not a part of the field ; their chamctenstw property is inertia
measured by a specific constant: the mmass——————- e :

At the present time nearly all physicists have ‘u{optod the dualistic_view,

which is supported by three facts.

. The fatlure of any attempt to develop a :uutmmn Ihe(rry -Such attempts

have been made with two esse ntmllyb(hﬁertmt tendencies : (a) The theories
started by Heaviside, Searte wnd J.J. Thomson, and completed by-Abraham,

Lorentz. and others, make geometrical assumptions about the * shape” and

kinematic behaviour of the electron and distribution of charge density (rigid
electron of Abraham. contracting electron of Lorentz); they break down

because they are ‘(-o"mpellcd to introduce cohesive forces of non-electromagnetic .
Corigin; (b) the theory of Mie§ formally avoids this difficulty by a generalization '

of Maxwells equations making them non‘linear; this attempt breaks down

t Research Fellow of the Rockefeller Foundation. [ should like to thank the Rocke-
feller Foundation for giving me the opportunity to work in Caimbridge.” )

1 This expression has nothing to do with “ unitary " field theory due to Einstein, Weyl,
Fddington, and others where the problem consists of uniting the theorics of gravitational

and clectro-magnetic fields into a kind of non-Riemannian geometry. Specially some of ©

Eddington’s formule, developed in § 101 of his book * The Mathematical Thecry of
Relativity ™ {Cambridge), have & remarkable formal unnlogv to those of this pager. in
spite of the entirely different physical interpretation.

§ ' Ann. Physxk’vnl 37, p. 511 (1912); vol. 39, p. 1 (1912); vol. 40, p. ](1913) Also
Born, * Gottinger Nachr,’ p. 23 (1914). ‘
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because Mie’s field equations have the unucceptable proparby, .that theu'
sohitions depend on' the absolute value of the potentials,

2. The result of relativity theory, that the -observed depeudance of mass
on velocity is in no way characteristic of electromagnetic mass, but can be
derived from the transformation law.

3. Last, but not least, the great success of quanlum mechanics which in its
present form is essentially based on the dualistic view. It'started from the
consideration of oscillators and partieles moving in a Coulomb field ; the,
methods developed in these cases have then been applied even to the electro-
magnetic field, the Fourier  coeflicients "of which - behave like harmonie,
oscillators. L

But there are indications that this quantum electrodynamics meets con-
siderable difficulties and is quite insufficient to explain several facts. R

The difticulties are chiefly connected with the fact that the self-energy of a
point charge is infinite.t  The facts um“cplzunod concern the existence of
elementary particles, the construction of the nuclei, the conversion of these
particlés into other particles or into photons, ete. ' l

In all these cases there is suilicient evidenee thut-the present theory (formu-,
lated by Dirac’s wave equation) holds as long as the wave-lengths (of the
Maxwell or of the de Broglie wxives)aur«‘ long compared with the * radius of
the electron ™ ¢2/me?, but breaks down for a field containing shorter waves.
The llonﬁppeamnm of Planck’s constant in this expression for the radius
indicates that in the first place the electromagnetic laws are to be modified ;-
the quantum laws may then be adapted to the new field equations.

Considerations of this sort together with the conviction of the great philo-
sophical superiority of the unitarian idea have led to the recent attempt? to
construct a new elec ﬁrodynamk 33, based on two rather different lineq of thought :
a new theory of the electromagnetic held and a new method of quantum
mechanical treatment. .

It seems desirable to keep these two lines separate in the further.development.
The purpose of this pupv'r is to give a’ deeper foundation of the new field
equations on classical lines, without touching the qumtmn of thc quantum

theory.

t The attempt to avoid this difficulty by & new dofinition of electric force acting on a
particle in a given tield, made by Wentzel (‘ Z. Physik,’ vol. 86, pp. 479, 835 (1933), vol.
R7, p. 726 (1934) ), is very ingenious, but rather artificial and leads to new difficulties.

1 Born, ‘ Nature,".vol, 132, p. 282 (1933); ‘ Proc. Roy. See.,’ A, vol. 143, 2 410 (1934),
cited here aa T,
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In the papets cited above, the new field theory has been mtroduced rather
dogmatically, by assuming that the ‘Lagrangian underlymg Maxwell’s theory

C L=} (HE—EB) - , _ (1.1)£

(H and E are space-v ectors of the electric and magnemc field) has to be replaced*. ;

by the expressiont , :
L=b2( 2 /1+ ’lzv(uz —E}) —1). ('1.2)
b

The obvious physical idea of this modmcatxon is the following :— -

The failure in the present theory may be expressed by the statement that
it violates the priniciple of finiteness which postulates that a satisfactory theory
should avoid letting physical quantities become infinite. Applying this
principle to the velocity one is led to the assumption of an upper limit of
velocity ¢ and to replace the Newtonian action function } mv? of a free particle
by the relativity expression me? (1 — V1 — v3/c?). Applying the same condition
to the space itself one is lead to the idea of closed space as introduced by
Einstein's cosmological theory.t  Applying it to the electromagnetic field one
is lead immediately to the assumption of an upper limit of the field strength
and to the modification of the action function (1.1) into (1.2).

This argument seems to be quite convincing. But we'bellieveathat a deeper
foundation of such an important law is necessary, just as in Einstein’s mechanics
the deeper foundation is };rovided by the postulate of relativity. Assuming
that the expression me? (1 -~1/1 — v2/¢%) has been found by the idea of a veldcity
limit it is seen that it can be written in the form

me? (1 — d/dt),
where

Adr? == 2 dP — dx? — dy® — 423,

and therefore it has the property that the time integral. of mc? dr/dt is in-
variant for all transformations for which d+2 is invariant. This four-dimen-
sional group of transformations is larger than the three-dimensional group of
transformations for which the timo integral of the Newtonian function

o . o® == b (ds/dt)? (Ls? = d2? 4 dy? + d2®,
18 1mvariang. : :

t See Born and Infeld, ¢ Nature, vol. 132, p, 1004 (1933),
1 See Eddington, * The Expanding Umvuse,” Cambridge, 1933.

. 2F2




Ces M. Born and L. Infeld e

So we beheve that wo ought to search for a group of transformatlons for
.which the <new Imgrzmgmn e\{pressmn has an invarient space-time  integral
and which is larger than that for the old expression (1.1), This latter group is
the known group of special: relamvny but not the group of geneml space-time
“transformations. T Nowitis very samfvmg, y that the new Lagrangian belongs
to this group of general relatxvlt\ ;-we shall show that it can be derived from
* the postulate of general invariance with a few obvious additional assumptions.
Therefore the new field theory seems to ‘be a consequence of this very general
principle, and the old one not more than a useful practical approximation,
just in the same way as for the mechanics of Newton and Einstein, '
In this paper we develop the whole theory from . this general standpoint.
We shall be obliged to repeat some of the formulw published in the previous
paper. The connection with the prdbleniu of gravitation and of quantum
theory will be treated later.

§ 2. Postulate of Invariant Action. -

We start from the general principle thatall laws of nature hzu ¢ to be expressed
by equations covariant for all space-time transformations. This, however,
should not be taken to mean that the gravitational forces pla}t an essential
part in the constitution of the physical world; therefore we neglect the
gravitational field so that there exist co-ordinate systems in which the metrical
tensor g,; has the value assumed in special relativity even in the centre of an
electron. But we postulate that the natural laws are independent of the
choice of the space-time co-ordinate system.

We denote space-time co-ordinates by

2ot a3, e,y 2, el

The differential dz* 15, as usual, considered to be a contravariant vector.
Ore can pull the indices up and down with help of the metrical tensor which
in any cartesian co-ordinate system (as used in special relativity) has the form
—1 0 0. 0
0 —1 0 0
{gu) = = (u). REAY
Tl e 0 -1 o [T _
o 0 o0 1
f The adaptation of the function L (1. l) to the general relntw:ty by multiplication with
N qmw formal. Any expression can be made general]v mvanant in this way.
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It is not the unit matux, because of thedxﬁerent slgns in the dxagoual There‘

fore we have to distinguish between covariant and contravariant tensors even-
in the co-ordinate systems of speczal ‘rglativity. - In tlis case, however, the -

rule of pulling up and down of indices is wvery simple. -This operation’ on the -
index 4 does not change the value of the tensor component that on one of the
indices 1, 2, 3 changes only the sign.

We use the well-known convention that one has to sum over any [mdex
which appears twice. .

To obtain the laws of nature we use a varlatlonal plmclple of least aotlon
of the form- B B

3| wdr=0, (dr — dat de® o dat). (2.2)

We postulate : the action integral has to be an invariant. We have to find
the form of "¢ satisfying this condition. ' )
We consider a covariant tensor field a,, ; we do not assume any symmetry
property of a,,. The question is to define % to be such a function of ay
that (2.2) is invariant. The well-known‘answ;er is- that ¢ must have the

—_— &

formt : L
= ml ; (Ia“{ - determinant of a,,). (2.3)

If the field is determined by several tensors of the second order, & can be
any homogeneous function of the detemnnants of the covariant tensors of
the order §.

Each arbitrary tensor a,; can be split up mto a symmetncal and anti-
symmetrical purt

=g+ fu; it == G s Ju= ‘“flk' : (2.4)

The simplest simultaneous description of the metrical and electromagnetic
field is the introduction of ome arbitrary (unsympmetrical) tensor a,; we
identify its symmetrical part g,;, with the metrical field, its antisymmetrical
part with the electromagnetic field.: 4

t See Eddington, “ The Mathematical Theor\ of Rwlntmt),, Cambridge, § 48 and 101
(1923). .
The proof is simple : by a tmnsformahon with the Jacobian I = 3______(1 =) dv i3 changed
8 (x' ... 24)
into dr == [ dr and {aza} into ja,y] = layy| 1-%; for the do® are contravariant, ax; covariant.
} This assumption has already been considered by Einstein, * Berl. Ber.,' pp. 15/37 .
1923) and p. 414 (1926), from the standpoint of the affine field theory.

&
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We have then hhree expresmons which multlphed by dr are mvarmnt

V- 'akl, = 'gkl +ful V- lg};t! \/’fkl (25)"
where the minus sign is added in ‘order to get real vn.Iuea of the square roots ;
for (2.1) shows that |8, = — 1, therefore always lgu] < 0.

The simplest assumption for ¢ is any hnearafunctnon of (2.5):
= l90 +ful + A V- ’gxil +B‘/’fkit- (2.6)

But the last term can be omitted. For if f,; is the rotation of a potential vector,
as we shall assume, its_space-time _integral can be changed into a surface ’
integral and has no influence on the variational equation of the field.§ There- -
fore we can take 7 ,
B=0. (2.7)
We need another condition for the determination of A. Its choice is obvious.
In the limiting case of the cartesian co-ordinate system and of small -values
of f.;, ¢ has to give the classical expression
CoL=Rfuf (2.8)
We now leave the general co-ordinate system which has guided us to the expros-
sion (2.6) for " and calculate ¥ in cartesian co-ordinates. Then we have
with g,; = 8,; (see (2.1))
~1 fu S S|
: = ] f«a + fsl +fia® — N
fa —1 a3 Sas

“fN ,u)
fa fuo —1 fu
fu S S 1 ‘ = (fasfua + farSfa ’i*‘fl-:f;u)

=1+ (fa? “f‘fs12 + i — fid —fzcz —fa®) — Ifkll-
For small .values of f,; the last determinant can be neglected and (2.6) becomes
equal to (2.8) only if :

- ‘Su +fu| =

‘ A= —1 2.9)
We have therefore the result :—
The action function of the electromagmetic field is in general co-ordinates

¢ = [9.1 +f/=«ll -V l9k1'~ ) ‘(2'10)
and in cartesian co-ordinates s
A =VIFF G, @1

+ Sce Fddington, loe. eit., § 101,
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where

. Fo=fogf +f312’§ flz ”‘fu “'fm ”"faa S ,)(2 12)’7?:{
- G = fufe + fafu + fafo s ’ CEB)

Let us gb back to the expression for ( In a general co-ordinate system.":,"
We denate as usual :

ngl! "‘g» . . }V/

and we develop the determinant ly” -+ f“| mto a power series in f;. ;e
have then : v

190 + fual =y+q> I fu) + | fual-

The transformation properties—of -}g,y + ful, ¢, | fiu| and therefore also -

of ® (g,;, fu) are the same. ~They transform in the same way as g. 1f v?{e

. S
write |

~gi1+% oy L[gﬂ_l ), e

.\\'v see, that all wxpressions in the bracket on the right side of (2.14) are in+
variant. We have caleulated their value in a geodetic co- -ordinate system and _
have found : . :

:,“ == é’fk’lfk‘ = Fa= %fkrflsglkg"'

b ¢ v un invariant. We have therefore in an arbitrary co-ordinate sg}stem: i
9o+ ful =g+ F Gy

=V WITFF G 1y |

F .- U‘}If“; (:2 LL_;[ . vfzsfu *‘fisz +f12f34) N (2.16)

(2.15)

Both F and G are invariant. We shall bring G into such a form, that its
nvariance will be evident.  For this purpose let us define an antisymmetrical »
tensor j*™ for any pair of indices, that ist

——lxm if skl is an even permutation of 1, 2, 3, 4

2y g
skl
! L of skl 18 an odd permutation of 1, 2, 3,4 [~ 2.17)
v -y
{ ¢ in any other case » : b

We can write now G in the following form :

G = “"‘"“f“ﬂm. ' ' (2.18)
+ Einstein and Mayer, * Berl. Ber.,’ p. 3(1982). .
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From the last equation we can deduce ‘the tensor character of j* “We can
also write G in the form = B ' : Voo
G =, 2 (@a9)
where f %% i3 the dual tensor defined by , ‘ N
SrE = (2.20€)
that is ) o
o= -“!—T—fu ‘ f*ai == —]-— Sonr R é‘—-‘-=’f:u
f—g V- ’ Vg
v g ) (2.21)
1 24 [ YO .
fr = \/__-———'fea, : _.}7"‘ S [ e \Vﬁffa
or also i )
Sraa=— \’/_:gf“: fra= vV :“;f“ fras v - L‘Ifs‘} (2.22)
Sha=— V?f’” St =~ \/'7‘/'3& S* N mg 2
because S ‘
SR Jann ™0 et =W Gt s, )" (2.23)
We shall need later the following formule ;o
Nt A ™ (2.24)

A iy = [ ¥ frs =GB
Jreh

(2.24)-(2.26) follow from the definision of f*,,, f*and G given above.

The function ¢ represented by (2.15) is the sunplest Lagrangian satisfving

,‘A
B e
ty b2
o

the principle of general invariance. - But it differs from that considered in I
by the term G2 This is of the fourth order in the S and can, therefore, he
neglected except in the immediate neighbourhood of singularities (i.e., electrons,
see § 6). But the La”grangmn used in I can also be expressed in a general
covariant form ; for G2 is a determinant. namely, | f,,|. therefore

‘ (V= lgu + ful + 'fc‘ ~ Ve Tgul)de (2'2,7)
i also invariant ; in cartesian co-ordinates it has exactly the.f(;rm
| WVIZF—-1nde. ' (2.28)

Which of these action principles is the right otie can only be decided by their
consequences. We take the expression given by (2.13) and can then easily
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return to the other (2.27) or (2.28) by putting G = 0. In any case the solutxon '
of the statical problem is identical for both action functions because one has {?;i;

G = 0 in this special case. : o

" . - e

§3. Action Principle, Field Equation and Conservation Law.
We write (2.15) in the Agenerai form °

¢ = VgL =vZgL(g. F G)

We shall see that all considerations hold if L is an invariant function of these
arguments. As usual we assume the existence of a potential vector ¢, .so
that ’

_Ody _ ¢
fa=55 -5 3.1)

Tauen we have the identity

'fl 21! _L";_ + ._L - (32)

which can with the help of {(2.20) be wntten c

e, (3:20)

We introduce a second kind of antisymmetrical field tensor Pxi» Which has to
f.; & relation similar to that which, in Maxwell’s theory of macrospic bodies,
the dielectric displacement and umgnetic induction have to the field strengths :

— _6_4_ B (f5— Gf**) \/:_ ‘
v —gptt = T g2 ab f +'—f*"’ VIirF- o8 fxvs3)

The variation principle (2.2) gives the Eulerian equations

O A/ g okl '
V=gp" . (3:4)
or!
The equation (3.2) (or (3.24) ) and (3. 4) are the complete set of field equations.
We prove the validity of the conservation law as in Maxwell’s theory.
Assuming a geodetic co-ordinate system, we multiply (3.2) by pi™:

P « »~
| &im o+ g_'ﬂ e ?L:_l p— (3.5)

Ak or cr™
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In the second and third term we can take p"‘ under th& dxﬁerentmtxon symbo! $
because of (3.4); in the first.term we use the daﬁmtxoxf @. 3) of. p

i:,;
. aL Jhn = 0 }/
af;

é;‘, (P ml
or ) ¥ -
~9° 4 9.‘: .~(
2 all (p mk) 2 6:1:" )
If we introduce the tensor .
T = L8 — p™ S , ©(3.6)
where : . 7
8;;‘ - 1 lf k =] , (3‘7) }
e {0uf ksl o .
we have o ; : )
' oT/} :
___ = 3.8
k=0, 6y

Iu an arbitrary co-ordinate system we have

—aT.k wb . y ‘
' a“——"’—“‘/ g1, — EVTW%:Q*”?‘I N (3.9)
P axf 2 N ka N )
or, with the usual notation of covariant differentiation

Ty == 0, o (3.94)

It follows from (3.3) and (2.25) that we can write also T,! in the form

Y .l
_ L [™ fox — G} .
T} = L3, " F ok ’ (J‘GA)‘

§ 4. Lagrangian and Hawmiltorian.

£ can be considered as a function of ¢* and f,;. - We shall show that

—2 0% .
—=—- =57 18 the energy-impulse tensor. We ﬁnd
V—g 39” gy-imp!

D ivTaaa . @

aég% = g"fkajlr » . (42)

a‘;ﬁ == éngl o - 4 (4.3)
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-—2—5917':\/ {Lgu‘“‘2<aFag*‘+aGay"')} )
' ‘ kaJlr il G2 . ‘ . ) . /
=5 {Lgu— f\/ﬁl, % — G_g:z}’. , (4.4) S

lt follows from (3 6A) and (3.6)

a &
2om =V—yg T = V9 (L — fuuid™: (4.5)
L .
Now it is very easy to- genemhzefourfactmn p,rmcxple in such a way tMt it
contains Einstein’s gravitation laws ; one has only to add to the action integral

the term I RV — gdr, where R is the scalar of curvature. But we do not:

- discuds ptoblems connected with gravitation in this paper.
'« " was regarded as a function of ¢*'and f,;. ‘We can, however, express &
also as a function of ¢*'.and p“ It can be shown that it is possible to solve
the equations '

P baf 5(3.3)
 VI+F—Ge
with respect to f'. For this purpose we have to éalculate
bppt, =P, (46)
e =Q u (4.7)

i.e., P and Q corresponding to F and G.. Using the formuli (3.3) and (2.24)-
(2.26), we obtain .
: —F + G2F + 4G3

PV-_« e (4.8)
Q'=a. - ~ (49
“The last equations can be written in a more symmetrical form :
1+F—G 14+@ '
6 TP (4.84}).
G=Q. , (4.9)

We are now able to solve the equations (3.3). It follows from (3.3) and (2.26)

that
wki &l .
prE = :/%% . 7 Lo (3.34)
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The tensors S and Pui- um now be treated Lompletely svmmemcslly
Instead of the- La;,rzmg:an L we can use in the prmcxple of action the Hamil-
tonian function H :

t

H;-:L-oép‘f“, '  ~‘ o (m)

where H has to be regarded as-» function of ¢* and p,;/. From! (4 8) (9).
and (4 10) it follows for H.as a fuuctmn of ¢ and py

—Hv“f/‘-i\:’:w(vl_+.PA~.Q?~—'1).'. S

and this can be expressed in-the form ..

o=V =gt pral \"’”“ 19l - '(4‘1'2‘5)

The function H leads us to exagtly ﬂwsﬁmmtmufﬁmﬁeﬂ a8 the fum,mou

L. Wo see that the equations A
| Oyt oy ¥, = antl- mt:ential-v(;ct:)r) (4.13)
pu_—*‘:—r PJ:' ) (r'kw‘u\ ¥ ‘
| T 04 : (4.14)
. v gft = ;zlf_s” ] A ) ) : .
-~ — 'Y " .
ov—gf*™ - (4.15)
ort : )
are entirely tqm\ulun to the equations (3.4), (4. 10), (J S

The energv-impulse tensor (3.6a) can also be expreased with help.of H

instead of L. One has
&

T B fAmp e (L b ) B0 — [, (416)

The identity of this expression with (3.6) is evident, t if we app&ul tg the fullumng., ’
formula which can be deduced from (2. ‘71) (2.22}

f ""I’ e P S = 39 fuy B #.17).

t In Iit has been stated that the two expresgions for Tyl obtained with help of L and
H, are different ; this has turned out to be a mistake. .
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Genera.lly, from' ench equatlon contammg Ey 4’1:: f,,,, ~Pyi,. one obtains vf}‘
another correct equation ahfmgmg these qunntxtles correspondmgly into

Hoh P [P

~

g o Field Equatwms n Space-vecmr\ Form.

. “We now mtroduce the- conventtoml units mstead ‘of the natural units. We
denote by B, E and D, E, -the ~spnce~vactoz‘s theh charactenze the electro-
magnetic field in the convenmoual umts We have in a mrtesm.n co-ordmate

system : . .
(2, 33 z‘) - (x Y %, ct) ’ 3 . (8.1)
(¢p ¢n 953: ‘ﬁ;) - (A ¢) - (52)
.(fla)f(ﬂ’flﬂ ~B } ) ‘ ‘ : ~:“(5‘3) )
f14rfofu)“E ’ " . :
(Pe3 Pap Pra— H } _ (5‘4)
I‘w Pas Pa-:) “"D - . o

The quotient of the field strength m:pressod in the: conventlonal umts dxwded .
by the field strength in the natural units-may be denoted by 6. This constant
of a dimension of a field strength may be called the abvolute Jield ; later we shall
determine the value of b, which tums out to be very gtemt t.e.; of the order of

maguitude 10! e.s.u. g
We have B ‘ ' s .
L=V1+4+F—Gt -1, . (2.11)
Dy— }, 2 __EF% . . — i ] . e ® 16
F = (B~ EY: = 5.(B E) ‘ (2.124) 7 (2.134)
oL B — GE
H=0% ___.__1_*
B vV1+F—G 830
pD_pil__E—GB (3.34)
E T VILF= &
. B-rotA; .E:-——%%%——grad¢ @y
ot E 178 =0 ; div B=0 A ‘(3.2‘B)
¢ ot P
1éD . _ )
I'OtH'-—'z—,a-[*—U, leD——O., “d (3.4A) ‘

Our field equations {3.28) and (3.44) aro foirﬁaﬂy identical with I&Iz;xwéll’s
equations for a substance_which has a dielectric constance and a susceptibility,
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being certain functions of the field strength, buﬁ thhout a spatml chstmbutxon .
of charge and current. ‘ S
For the energv unpulse tensor we find :

Xa& Xy .Xl GGE
Y, Y, Y, G,

411; I‘ki) = Z, 2, Z, oG, - (3.6a) .
\ ’ lg, 1s, Is, U ’
- C (o [
4nX, = H,B, -+ H,B, — D.E, — b2
4nY, = 4nX, = — H,B, — DK, .
4" . . (36}3)

= dmeli, = DB, — D,B,

e
nl = DK, + DK, + D,E, + #2L
One gets another set of expressions for these quantities by changing L, B, E,
H, D into H, H, D, B, E. ‘
The (:(_)nscrvntion laws are ;| . B

X, - X, F‘l _ 18, c'S .
ér ay PP ot C
AR (3.84)
8, | Dy S, L HU
or ay "o o
The function H is given by )
. Ho VI +P—Q2—1 . {4.124)
1 . g .
P = P (D%~ HY); Q= (- H. (4.8a); {4.7a)
Solving (3.34) we ()l;tatixx :
pdH . H4-QD
H AT P-¢
(3.104)

E—~pdd . _D+QH

D V14 P Q2
§ 6. Static Solution of the Field Equations.
We cousider (in the cartesian co-ordinate system) the electrostatic case
where B = H =0 and all other field components are mdepeudent of t. Then

the field equations reduce to :
, rot E = 0 , : (6.1)

divD = 0. (6.2)
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We solve this equatxon for the case of central symmetry Then;.(6.2) is
simply p . R :

A S =0, - ‘ - (63)
L mvm)o,a Co ©3)
and (6.3) has the solution TR ; o
’ = e/# . L (64) -
In this case tha field D is exactly the same as in Maxwell’s theory : the s sources
of D are point charges given by the surface integral .

-

, . _4me=\Dids. (6.5)
The equation (6.1) gives ) )
' ' E=-%__yu (6.6)
’ dr »
and from (3.34) \

Yy ,\/1_.12,&

first order with.the solutmn

LY

= C T ) [F ‘__: .
O =TT [VW#T "o \/v - 68)

This is the elementary potential of a point charge e, which has to replace
Coulomb's law ; the latter is an approximation for z -1, as i8 seen im-
mediately, but the new potential is finite everywhere. :

With help of the substitutiou T = tan {8 one obtains

- _,Aﬂ“_ _ 3Pl L B :
f() %j*(:)\/m f(O) %F\vév B))__ (639)
where :

E-: 2 arc tan r, (6,1,0)

and F(k,8)is tho Jacobmn elliptic integral of the first kind for % = V‘- = 8in }ﬂ: V
(tabulated in many books)t i

iy ._]_'__ a e ‘E_.__CEL___, ‘
B<\/§’{j) Jq;Vlfésinaﬁ' ©.11)

t B.g., Jahnke-Emde, “ T\ables of func tions  (Teubner 1933), p. 127.
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For z = 0 one has , o .
fO =¥ (J= dm ) = 1801 AT
(0 V3 4 ) . ,
The potential has its maximum in the centre and its value is :
$(0)= 1854l efry. (6.13)
2-6[ , - R N
FRI N E
L:
200 .

Fio. 1.

The function f(z) is plotted in fig. 1. Tt has very similar properties to the

function arc cot z. For example, one has
&

E(l/z)=23rctanl/m:=2(&nwarcmnx)’z:-nw‘é(x)';. o

on the other hand

P | ot 1 -~ N '\
F{— "J\i —_— T~ S
SV Ale +F<\/2’r P F( %"
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2 S

[ @)+ (Ljz) = F(0). (6-M)
1t is sufficient, therefore, to calculate f («) from =0 to x = 1 or from 5= 0

to B ={m : . .

One sees, that the D field is infinite for r = 0 ; E and ¢., however, are balways o
finite. - One has . : .

Therefore one has

D, =er, o 64
By e e (6.15)
TV 4 (1)

The components E,, E,, E, are finite at the centre, bit have there.a dis-

continuity. e
§ 7. Sources of the Field.

[n the older theories, which we have called dualistic, because they considered
matter and field as essentially different, the ideal would be to assume the
particles to be point charges ; this wasimpossible because of the infinite self-
energy.  Therefore it was necessary to assume the electron having a finite
dismeter and to make arbitrary assumptions about its inner structure, which
lead to the difficulties pointed out in the introduction. In our theory these
difficulties do not appear.  We laveseen—that-thepyfield (or D-field) has
a singularity whieh corresponds to a point charge as the source of the field.
D and E are identical only at large distances (# .- r,) from the point charge,
hut ditfer in its neighbourhood, and one can-call their quotient (which is function
of E) " diclectric constant 7 of the space. But we shall now show that
another interpretation is ako possible which corresponds to the old idea of a
spatial distribution of charge in the electron, It consists in taking div E
pstead of div D - 0) ws definition of charge density p, which we propose to ;
call " free charge density.”

Let us now write our set of field equations in the following form

N g pM!
g ;';"!- == (), (3.4
i o CN g/ .
e o - U, or T = ), A (3.2)

P s @ given function off“b and if we put in (3.4) for p*' the expression (3.3).

i which L is not spectfied, we obtain :

L - . -
TN wkl . == ), X -
5 —-E("‘f SIvi—yy . (7.1)
We can now write the equation (7.1) in the form :

eV—gfe
crt ]

VOL. CXLIY 3. I ——— 2 ¢
— ) , 2

=dn et oy, (7.2}
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where S
) ' 2 ;oL ¢ ol "
— L. & ki b R I -
47:? 2?!../".1“ l f "‘t\aF f f ﬁ.l? m . “ 3)

The equations (7.2) and (3.2) are i‘orlnally identical with the equations of
the Lorentz theory. But the important difference consists in this, that p*
is not a given function of the space-time co-ordinates, but is a function of the
unknown field strength. If we have A solution of our set of equations, we are
able to find the density of the ** free charge ™ or the
of (7.2) or (7.3).

We see immediately that o* satisfies f}){{ conservation law :

free current * with help

k -
=L =0, (1.4)

This follows from (7.2). that is from the antisymmetrical character of % and can
also be checked from (7.3).

In Lorentz’s theorv there exists the energy- unpul% tensor  of thv electro-
magnetic field, defined by

128, =3,/ F —fuf, (7.5)
but its divergence does not vanish, where the density of charge'is not zero.
Therefore to preserve the conservation principle in the Lorentz’s theory it was
necessary to introduce an encrgy-impulse tensor of matter, M¥, the meaning of
which is obscure.  The tensor M,' had to fulfil the condition that the diver-

gence of 8, + M, vanishes. This difficulty does not appear in our theory.
We do not need to introduce the matter tensor M,' because the conservation
laws are always satisfied by our energy-impulse tensor T,*.

We shall. however, show that it is possible by introducing the free charges to

bring our conservation law

T =0
mto the form used in the Lorentz theory, namely. .
k -
So= o [ - (7.6}

The caleulations are similar to these used in §3. The simplest: way is to
choose a geodetic co-ordinate system. We huw then :

afk '

g 1 7.2

LT (7.24)
’f“ 11_ (jmk )
er™ + GO = -2)
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Multiplying (3.2) by f ® we find :

MR

R SN i of k
LB P AT T TR
and therefore ' : v
) ¢ : 0 ey n o
i Eye (fuf ™) —~ e (L) = fuo® . (7.8)
and taking account of (7.5) : ‘
B et a9
axk v sk 5

One can derive the same equation directly from the conservation formula
(3.8) writing'it, in a geodetic co-ordinate system, in the form

Ak
oTr

=0, (3.8)

and introduciny the expression (3.6) for T,%. The two methods are equivalent.

Let us now specialize our equations for the cage in which L has the form given .

i (2:15).  We obtain then for p* in{T:3)—

. 1 &/ 1 o 1
dmet e |t © e O }
e \/l+F-Gzlf Sz‘\\/l—f—F-——Gz, f ‘<¢\/1+F—G2)'
' ©(1.10)
{n the space-vector notation. where
1
(1 P2 ParPa) > (=i 0),
we have
1 . . 1 ]
- e e B X g 8 .
¢ viTFoo P e T
. G ]
e T TR o6
1 -
CVITF Gl & VIt F =G
ZVixr—c
1 1 \
Inp = — e TR ] | — = )
P VitFoml Oy ol
- B, grad{ WI—*-—————-I‘,—:—@)" )
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We shall ‘now apply the reqults here obmmed ta the cuse of the bt.atuul
field. In this case E is always tmxto and has a non- vnnwhmg «hvnr;,eufe
which represents the free clmrge ‘We can, therefore, regsmi an’ electron
cither as a point charge, 1.c., as a’source of the I (p) hcld or ds a continuous
distribution of the space charge which is a source of the' E (fi) field. 1t can
easily be shown that the whole charge is in both. cases the same (as ix to be
expected). - Both S ,

- divDde and  |divEdr

have the same value, i.e., 4e.  For the first- integral it has been shown m

¥ 6. For the second we have

l‘ ~(— LN r‘vli‘?\

5

2 v - .
/

everywhere else B, is finite.  The discontinuity of K, E,. k. at the ongn

1% also finite and gives no contribution to the integral. Therefore

div Edr l': rlr e

Let us now caleulate the distribution of the free charge in the staticad case.
We could calculate it from the equation (7.104). but it is easier to do it from

the equation

(7.1
where
6. 10)
The result i<
- [
' Ly 1a {742
fu - L

For + 7, z = r 7. therefore diminishing verv rapidly as 7 increases,  For

7l rye g Lor, therefore oo~ o) but g -+ 0 for r-~0. 1t is casy to verify

that the.space integral of 2 15 equal to . For one has. puttmu rlry er A tan o

s - ™,
rtdr ’

‘; dr 42 e ‘ " Cis (f; '/v'/ ‘(".‘
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Our thvory (,ombmes the two possible aspects of the field'; true pomt charges i
and free spatial densities- are entirely. eqmvalent The question whether the." .
one or the other picture of the electron is right has no meaning. "This confirms :
the idea which has proved so fruitful in. quantum mechanics, that one.
hd? to be eareful in applying notions from the macroscopic world to the world of
m}oms it may happen that two notions contradictory in macroscopxc use are

quite compatible in mic ropln Sics.

§8..  Lorentz's Equations of Point Motion mzd Mass

We consider once more the problem of the electron at rest. We mtend to
caleulate the mass and to determine the absolute ﬁeld' constant b In terms of
observable qumititios, It is convenient %o use the space vector notation.

The impulse-energy tensor is according to (3.68)

. : 2 a - -
=X, = ~D,E, — BL = — B, ' ]

V1 — 1/pE?
' 1
— b 1—=E—11x
[ VA R
,;nx o *l) E :,__..____[&Ll_“]

VI = 1l E R
o L. (3.60)

S, =8, =8, =0
U - DLUE F Bl = b H = 2 \/1—1,le2_~1[

E? 2 .1

S S == b 1\
VIZIBE | Vieiope L)

¢

We calculate the space integrals of these unant;ities. Obviously one has with
dv=drdyd::

2 .
’.\ dvﬁl-—‘\ ¢lv—«4,.JL dv = — }dev -
g ‘( Vi I%QEL- Lyde  (81)
J'x, dv = }x dy = j Z,dv =0, : LT 82)

Using (6.15) and (6.8) we find :

|Xodo =02 (1, — 1), 63
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, where’ ' 8 . :
| - ( },emr
‘ ) h/ Vi '*‘ ot (8.4]
- [i
L= §'Jo Vit »Exvf(())‘

The integral I, can he transformed by parti’;sl» integration :

L Fx }:z 172 i rxp s "r .{J"d:l' )
=3 - o drd,_{* 1- \————/] ol ) e

The first term vanishes; the-second-ean be transformed by another partial

integration : |
* 1 § . d dx A ) .

= — r ===l = ) | == e LA40).

R éj dr viga ™ 3*,'.(, Vil _‘;f( )

The result is the so-called ** theorem of Laue 7t
]X, dv = !’\ do = ‘ Z, dv = 0.

In the statical case and in a co-ordinate system in which the electron is at rest
the integrals of all components of the tensor T,' vanish except the total energy
hr

E = | Ude = ‘—_J H dv. . (8.9}

We tind from (3.6¢), (6.15), and (8.1)

" 2 s
E=mg? o 8@, L) Sl =5 S0 < 128615 (80

_ o o o
We have obtained a finite value of the energy or the mass of the eleetron with a
definite numerical factor. This relation enables us to complete our theory
concerning the value of the absolute field & in the conventjonal units. For
(8.6) gives the " radius " of the electron expressed in terms of its charge and

L3
mass :
. ef ; -
ry o D236l — 5 2,28 o 0T oy, (8.7)
) ' g
and .
& - A
R N LR Loy . (B8
Ty V

The enormous magnitiude of this field justifies the apphication of the Maxwell's

: t Mie,c Aun, Phaeik, sol. 40, p. 1 (1913
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equations 'in their classicil form in all cases, except those where the- umer
structure of the electron is-concerned (field of the order b, distance or wave-
length of the order ro) i s

It can be shown that the motion of an elementary charge on wluch an
external field is acting, satisfies an equation which is an obvious genemhzatlon
of the classical equation of Lorentz. To find this equation we shall use here a
cartesian_ co-ordinate system. . )

We assume that the strength of the cxternal field in a reglon surroundmg
the clectron is very small compared with the proper field of the point charge.
We denote the proper field of the electron by '

S, : (8.9)
and the external field by # . ’
REESY AN (8.10)
we do not take into consideration the sources of the external field. From the
assumption, that o
o I’Al"\ = f fl e ful” . ) (8‘11)

mside the sphere surrounding Lho electron. it follows evidently that the real
solution of the ficld equations cannot be very. different from that obtained by
adding the nuperturbed proper field and the external field. We  construct
therefore a sphere 8 with its centre at the singularity of H and with a radius
% which is o small, that inside the sphere (8.11) is always satisfied. ~Bu2 the
radius £ of the sphere has to be great compared with the radius of the eléctron,
s that we can assume the validity of Maxwell's equations on the surface Of
the sphere just as outside the \[)lwrs*w .

We make the further assumption that the acceleration (curvature of the
world lme) ™ not-too large. Lo, one can choose the radius in such a way that -
W0

the field p, 0 inside 8 is essentially identical with that of. the charge ein~

nndorne motion and can be derived from the formula of § 7 by a Lorents

transfornution.  Now we split the integral

‘Hd: S (8.12)
intq a part wnmpcndmu to: thcixplu‘rv 89 and the rc\t of space R, 1h 8 we
have : . - ’ ) ’

= x*’l %1{:.‘1;“ -1 1 -
, — : e -4 (813)

= \/1 T"“%Puw an .u_n. p”u)\fmu . 5]};:)/‘(«)“ —1: f’
Q=0 ' ' J
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Corresponding to (8.11) »ono’c&an"cou’sidéf the terms £, f % as small of the
first order (compared with £, 9%, the terms fi, f*'*! as smull of the-
second order, and these lattér will be neglected. Then we have by developing

(8.13) and using (4.14):
which holds inside the sphere 8. We can write (&H)»_f'n apother forna: ‘

H = HY — é.f&ylﬁf ekt __ . }l/’k‘u‘lfi;u\‘!‘"
!

Hiv \1 ‘-—.k 10) ik} (8.13)
bpa”p

(8.15) differs from (8.14) only in. the terms of the second order. But (8.15)
holds not only inside but also outside the sphere.  For in R'the equation (8.15)

takes, according to our asswmptions about %, the following form:

H o — } p@po" — Sf“mpfmu . ,}f“("f;')“ .
LN O LT 806

This is, however, the known expression for H in Maxwell's theory ; (L = - H).

Therefor- (8 15) holds as well m the sphere§ " winr R—One has
‘ Hd- = ‘ HO {7 — ) ‘f“m) SO s} ‘f““'f";“dt. (8.17)

We introduce the notation
:

tmA e | MO de = § | f® f 8 dr — | fute st de, (%.18)

and have for the action principle

3| Adt = 0. (8.19)°
The integral -
‘ S feRde . (8.20)
in (B.17) gives zero, because ’
Ef ekl i " R
Lo =05 (p= 0, ®.21)

If we bear in mind that in the co-ordinate system, where the point charge is at

rest, ‘H‘“’ dv is proportional to the mass, we have :

j HO dy = muﬁ”j VIZVieds, - (meyT
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where v is the velocity of the centre of ‘ohe vlectron In t,h}: second integral ‘

of (r.17) we have

Y A (8) 5 - o
f ) w"f’l g (8.93)
. o ox’ -
and by partial integration we find, using -
: o J SOR O dedt e — Ax| B, gt dedt. S (8.24)

The additional surface integral over the infinitely large surface can be omitted,

because it gives no u)nmhunun to the variation (8.19). The result is:
A gt AT VR \ &7t dv. (8.29)
We ean write (3.23) in the space-veetor-form :

Ao m,{'\l—v

2 __ \ p«li‘ ! ‘~AI dl (8:254)
¢

An electron hehaves therefore likea-meehanical systemtwith the rest mass mg,
a ) » tel 4

acted on by the external field f,,'“.7
If the external potential is essentially constant in-a region surrounding the
eleetron considered.. the ‘diameter of which is large compared with r,, one gets

wistead of (8.25)

A gy TVEE e (67 — v A7 o), (8.26)

and this ix entirely equivalent to Lorentz’s equations of motion. But our

t Born, * Ann. Physik.” vol. 28, p. 571 (1909); Pauli, vami\‘ithtsthvori;:," p. 642
i Teubner). .

¢ The wethod used in I for deriving the equation of motion is not correct. 1t started
from the action principle in the form : . '

Blldr =0 (instead 8 f Hdx - 0);

then in the development instead of the coeflicients 09 the p® appear, which become
infinite at the centre of the eleetron,  Therefore the transformation of the ‘xpace integral
i3 not allowed.  In the first approximation we have. e

Py Pt o= pgt L

f _:,f“uln ;H.fkl(t). . c——

The mistake in the former derivation is also shown by the wrong result-for the mass {the -
numerical factor was half of that given here). et

and not
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formula (8.25) holds also for fields which are not constant. Any field can be
split up in Fourier components or elmucumry waves ; we may consider. each
of those separately, and choosing the Z-axis parallel to the propagation of the
wave, we can assume that ¢, is proportional to ¢#***. Thén we see that
this Fourier component gives a contribution to the integral (8.25) of the form
(8.26); where ¢ is now the amplitude of this component nud @ has to he

'y

replaced by an eﬁ'eLth(‘ i*har e ¢, given bv
P ge ¢,

»

e . ce2m A
L3 N

Using the expression of 5 given by (7.12), zmd putting 2 = rcos B,

dv == /2 8in ) 4 d dr.,

one has

P ] I dr e ~ ) '
L B v I NI T O £
r3 r o N
1 v
o de Fgooe "u‘ :

The & integration can be pt‘rfnun«-«l and one can write

. L2 sinay
L) ;‘ ‘ a s )'g 'l[f‘

For waves long compared with ry one his ¢ =2 ¢ "hecause ¢ (U) == L. But for

degreasimg wave-Je ‘nyths the effective charge diminishes, as the lml«\ table for
(o) shows ’
Table of g ()%

I
‘. g (e ! Z. gy

t

" R |

(13

‘o 2o
el [IRRCE AT ’
0-2 0484 135
u-y 018 206 -
0ot IRy 2.u3
0o 2500 °
[INY 3
"y 350
0§ 1-00
[EX] Do
16 .
The decrease begins to become remarkable w hurc» I~ 1, Ao~ 2y,

For
fﬂ.rg(‘ 2oone s g{ry=2 'I" E

t Caleuluted by Mr, Devonshire,
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If we introduce the quantum energy corresponding to the wave-length A -«
by K = ke/}, then using {8.6) one has -

=132 B *_13_63;:'_1__-& .
T )\ Iw muc 137 1my? 111 moc-" S
-1 corresponds to a quamtum enerby of about 100 mge® =5, 107 e. vblt.

Por energies larger than this the mtemetxon of. electrons with ()ther electrous
(or light waves excited by t.hose) shonld become smaller than that calculated
by the accepted theories. This consequence seems to be confirmed by the
astonishingly high penetrating po“ er of the cosmic rays.t

Summary.

The new field theory can ba consxdcrvd as a revival of the old idea of the .

clectromagnetic origin of mass.  The field equations can be dérived from the’

o

postulate that there exists an * absolute field 7 b which is the natural unit for
all field components and the upper limit of a purely electric field. From the
standpoint of relativity transformations the théory can he founded on the
assumption that the field is represented by a non-symmetrical fensor a,,;, and
. that the Lagrangian is the square root of its determinant; the symmetrical
part g,, of a,, fepresents the metric field, the antisymmetrical part f;; the
electromagnetic field.  The field equations have the form of Maxwell’s equa~
tions for a polarizable medium for which the dielectric constant and the magnetic
susceptibility arc special functions of the field components.  The conservation
laws of energy and momentum can be derived. The static solution with
spherical svmmetry vorrospbnds to an electron with f&ite energy (or mass);
the true charge can be considered us concentrated ina point, but it is also
posstble to introduce a free charge with a spatial distribution law. The motion
of the electron in an external field obeys a law of the Lorentz type where the
force is the integral of the product of the field and the free charge density.
From this follows 4 decrease of the force for alternating fields of short wave-
lengths (of the order of the electronic radius), in agreement with the observa-
tions of the penctrating power of high frequency (cosmic) rays. B

t Born, * Nature,” vol. 133, p. 63 (1934).




