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Introduction

In an attempt to develop certain outlines of a theory of line-spectra based
on a suitable application of the fundamental ideas introduced by Planck in
his theory of temperature-radiation to the theory of the nucleus atom of
Sir Ernest Rutherford, the writer has has shown that it is possible in this
way to obtain a sample interpretation of some of the main laws governing
the line-spectra of the elements, and especially to obtain a deduction of
the well known Balmer formula for the hydrogen spectrum!. The theory in
the form given allowed of a detailed discussion only in the case of periodic
systems, and obviously was not able to account in detail for the characteristic
difference between the hydrogen spectrum and the spectra of other elements,
or for the characteristic effects on the hydrogen spectrum of external electric
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and magnetic fields. Recently, however, a way out of this difficulty has been
opened by Sommerfeld? who, by introducing a suitable
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Introduction was signed ‘Copenhagen, November 1917’. The titles of
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generalisation of the theory to a simple type of non—periodic motions and
by taking the small variation of the mass of the electron with its velocity
into account, obtained an explanation of the line—structure of the hydrogen
lines which was found to be in brilliant conformity with the measurements.
Already in his first paper on this subject, Sommerfeld pointed out that his
theory evidently offered a clue to the interpretation of the more intricate
structure of the spectra of other elements. Briefly afterwards Epstein® and
Schwarzschild* independent of each other, by adapting Sommerfeld’s ideas
to the treatment of a more extended class of non—periodic systems obtained
a detailed explanation of the characteristic effect of an electric field on the
hydrogen spectrum discovered by Stark, Subsequently Sommerfeld® himself
and Debye® have on the same lines indicated an interpretation of the effect
of a magnetic field on the hydrogen spectrum which, although no complete
explanation of the observations was obtained, undoubtedly represents an
important step towards a detailed understanding of this phenomenon.

In spite of the great progress involved in these investigations many dif-
ficulties of fundamental nature remained unsolved, not only as regards the
limited applicability of the methods used in calculating the frequencies of
the spectrum of a given system, but especially as regards the question of the
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polarization and and intensity of the emitted spectral lines. These difficul-
ties are intimately connected with the radical departure from the ordinary
ideas of mechanics and electrodynamics involved in the main principles of
the quantum theory, and with the fact that it has not been possible hitherto
to replace these ideas by others forming an equally consistent and developed
structure. Also in this respect, however, great progress has recently been ob-
tained by the work of Einstein” and Ehrenfest®. On this state of the theory
it might therefore be of interest to make an attempt to discuss the different
applications from a uniform point of view, and especially to consider the
underlying assumptions in their relations to ordinary mechanics and elec-
trodynamics. Such an attempt has been made in the present paper, and it
will be shown that it seems possible to throw some light on the outstanding
difficulties by trying to trace the analogy between the quantum theory and
the ordinary theory of radiation as closely as possible.
The paper is divided into four parts.

Part I contains a brief discussion of the general principles of the theory and deals
Part 11 with the application of the general theory to periodic systems of one degree
Rart III of freedom and to the class of non—periodic systems referred to above.
Part IV contains a detailed discussion of the theory of the hydrogen spectrum in
order to illustrate the general considerations.
contains a discussion of the questions arising in connection with the expla-
nation of the spectra of other elements.
contains a general discussion of the theory of the constitution of atoms and
molecules based on the application of the quantum theory to the nucleus
atom.

Copenhagen, November 1917.
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PART I. ON THE GENERAL THEORY

1. General principles

The quantum theory of line—spectra rests upon the following fundamental
assumptions:

e [. That an atomic system can, and can only, exist permanently in a
certain series of states corresponding to a discontinuous series of val-
ues for its energy, and that consequently any charge of the energy of
the system, including emission and absorption of electromagnetic ra-
diation, must take place a complete transition between two such states.
These states will be denoted as the stationary states of the system.

II. That the radiation absorbed or emitted during a transition between
two stationary states is ‘unifrequentic’ and possesses a frequency v,
given by the relation

E' = E" = hy, (1)

Where h is Planck’s constant and where E' and E" are the values of
the energy in the two states under consideration.

As pointed out by the writer in the papers referred to in the introduc-
tion, these assumptions offer an immediate interpretation of the fundamental
principle of combination of spectral lines deduced from the measurements of
the frequencies of the series spectra of the elements. according to the laws
discovered by Balmer, Rydberg and Ritz, the frequencies of the lines of the
series spectrum of an element can be expressed by a formula of the type:

v=fru(n") = fr(n), (2)

where n’ and n” are whole numbers and f;(n) is one among a set of func-
tions of n, characteristic for the element under consideration. On the above
assumptions this formula may obviously be interpretated by assuming that
the stationary states of an atom of an element form a set of series, and that
the energy in the nth state of the 7th series, omitting an arbitrary constant,
is given by

B, (n) = —hf.(n). (3)

We thus see that the values for the energy in the stationary states of an
atom may be obtained directly from the measurements of the spectrum by




means of relation (1). In order, however, to obtain a theoretical connection
between these values and the experimental evidence about the constitution
of the atom obtained from other sources, it is necessary to introduce further
assumptions about the laws which govern the stationary states of a given
atomic system and the transitions between these states.

Now on the basis of a vast amount of experimental evidence, we are
forced to assume that an atom or molecule consists of a number of elec-
trified particles in motion, and, since the above fundamental assumptions
imply that no emission of radiation takes place in the stationary states, we
must consequently assume that the ordinary laws of electrodynamics cannot
be applied to these states without radical alterations. In many cases, how-
ever, the effect of that part of the electrodynamical forces which is connected
with the emission of radiation will at any moment be very small in compar-
ison with the effect of the simple electrostatic attractions or repulsions of
the charged particles corresponding to Coulomb’s law. Even if the theory of
radiation must be completely altered, it is therefore a natural assumption
that it is possible in such cases to obtain a close approximation in the de-
scription of the motion in the stationary states, by retaining only the latter
forces. In the following we shall therefore, as in all the papers mentioned
in the introduction, for the present calculate the motions of the particles in
the stationary states as the motions of mass— points according to ordinary
mechanics including the modifications claimed by the theory of relativity,
and we shall later in the discussion of the special applications come back to
the question of the degree of approximation which may be obtained in this
way.

If next we consider a transition between two stationary states, it is ob-
vious at once from the essential discontinuity, involved in the assumptions
I and II, that in general it is impossible even approximately to describe
this phenomenon by means of ordinary mechanics or to calculate the fre-
quency of the radiation absorbed or emitted by such a process by means
of ordinary electrodynamics. On the other hand, from the fact that it has
been possible by means of ordinary mechanics and electrodynamics to ac-
count for the phenomenon of temperature-radiation in the limiting region
of slow vibrations, we may expect that any theory capable to describing
this phenomenon in accordance with observations will form some sort of
natural generalisation of the ordinary theory of radiation. Now the theory
of temperature-radiation in the form originally given by Planck confessedly
lacked internal consistency, since, in the deduction of his radiation formula,
assumptions of similar character as I and II were used in connection with
assumptions which were in obvious contrast to them. Quite recently, how-




ever, Einstein® has succeeded, on the basis of the assumptions I and II, to
give a consistent and instructive deduction of Planck’s formula by introduc-
ing certain supplementary assumptions about the probability of transition
of a system between two stationary states and about the manner in which
this probability depends on the density of radiation of the corresponding
frequency in the surrounding space, suggested from analogy with the or-
dinary theory of radiation. KEinstein compares the emission or absorption
of radiation of frequency v corresponding to a transition between two sta-
tionary states with the emission or absorption to be expected on ordinary
electrodynamics for a system consisting of a particle executing harmonic
vibrations of this frequency. In analogy with the fact that on the latter
theory such a system will without external excitation emit a radiation of
frequency v, Einstein assumes in the first place that on the quantum theory
there will be a certain probability AZ;,dt that the system in the stationary
state of greater energy, characterised by the letter n/, in the time interval
dt will start spontaneously to pass to the stationary state of smaller energy,
characterised by the letter n”. Moreover, on ordinary electrodynamics the
harmonic vibrator will, in addition to the above mentioned independent
emission, in the presence of a radiation of frequency v in the surrounding
space, and dependent on the accidental phase—defference between this radi-
ation and the vibrator, emit or absorb radiation—energy. In analogy with
this, Einstein assumes secondly that in the presence of a radiation in the
surrounding space, the system will on the quantum theory, in addition to
the above mentioned probability of spontaneous transition from the state n’
to the state n”, possess a certain probability, depending on this radiation,
of passing in the time dt from the state n’ to the state n”, as well as from
the state n” to the state n’. These latter probabilities are assumed to be
proportional to the intensity of the surrounding radiation and are denoted
by Q,,lelldt and QVBZ/”dt respectively, where g,dv denotes the amount of
radiation in unit volume of the surrounding space distributed on frequencies
between v and v + dv, while BZ/I, and BZ/N are constants which, like AZ;,,
depend only on the stationary states under consideration. Einstein does not
introduce any detailed assumption as to the values of these constants, no
more than to the conditions by which the different stationary states of a
given system are determined or to the ‘a—priory probability’ of these states
on which their relative occurrence in a distribution of statistical equilibrium
depends. He shows, however, how it is possible from the above general
assumptions of Boltzmann’s principle on the relation between entropy and
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probability and Wien’s well known displacement—law, to deduce a formula
for the temperature radiation which apart from an undetermined constant
factor coincides with Planck’s, if we only assume that the frequency cor-
responding to the transition between the two states is determined by (1).
If will therefore be seen that by reversing the line of argument, Einstein’s
theory may be considered as a very direct support of the latter relation.

In the following discussion of the application of the quantum theory to
determine the line—spectrum of a given system, it will, just as in the theory of
temperature-radiation, not be necessary to introduce detailed assumptions
as to the mechanism of transition between two stationary states. We shall
show, however, that the conditions which will be used to determine the
values of the energy in the stationary states are of such a type that the
frequencies calculated by (1), in the limit where the motions in successive
stationary states comparatively differ very little from each other, will tend
to coincide with the frequencies to be expected on the ordinary theory of
radiation from the motion of the system in the stationary states. In order
to obtain the necessary relation to the ordinary theory of radiation in the
limit of slow vibrations, we are therefore led directly to certain conclusions
about the probability of transition between two stationary states in this
limit. This leads again to certain general considerations about connection
between the probability of a transition between any two stationary states
and the motion of the system in these states, which will be shown to throw
light on the question of the polarisation and intensity of the different lines
of the spectrum of a given system.

In the above considerations we have by an atomic system tacitly under-
stood a number of electrified particles which move in a field of force which,
with approximation mentioned, possesses a potential depending only on the
position of the particles. This may more accurately be denoted as a system
under constant external conditions, and the question next arises about the
variation in the stationary states which may be expected to take place during
a variation of the external conditions, e.g. when exposing the atomic system
to some variable external field to force. Now, in general, we must obviously
assume that this variation cannot be calculated by ordinary mechanics, no
more than the transition between two different stationary states correspond-
ing to constant external conditions. If, however, the variation of the external
conditions is very slow, we may from the necessary stability of the stationary
states expect that the motion of the system at any given moment during
the variation will differ only very little from the motion in a stationary state
corresponding to the instantaneous external conditions. If now, moreover,
the variation is performed at a constant or very slowly changing rate, the




forces to which the particles of the system will be exposed will not differ at
any moment from those to which they would be exposed if we imagine that
the external forces arise from a number of slowly moving additional particles
which together with the original system form a system in a stationary state.
From this point of view it seems therefore natural to assume that, with the
approximation mentioned, the motion of an atomic system in the stationary
states can be calculated direct application of ordinary mechanics, not only
under constant external conditions, but in general also during a slow and
uniform variation of these conditions. This assumption, which may be de-
noted as the principle of the ‘mechanical transformability’ of the stationary
states, has been introduced in the quantum theory by Ehrenfest!? and is, as
it will be seen in the following sections, of great importance in the discussion
of the conditions to be used to fix the stationary states of an atomic system
among the continuous multitude of mechanically possible motions. In this
connection it may be pointed out that the principle of the mechanical trans-
formability of the stationary states allows us to overcome a fundamental
difficulty which at sight would seem to be involved in the definition of the
energy difference between two stationary states which enters in relation (1).
In fact we have assumed that the direct transition between two such states
cannot be described by ordinary mechanics, while on the other hand we pos-
sess no means of defining an energy difference between two states if there
exists no possibility for a continuous mechanical connection between them.
It is clear, however, that such a connection is just afforded by Ehrenfest’s
principle which allows us to transform mechanically the stationary states of
a given system into those of another, because for the latter system we may
take one in which the forces which act on the particles are very small and
where we may assume that the values of the energy in all the stationary
states will tend to coincide.

As regards the problem of the statistical distribution of the different sta-
tionary states between a great number of atomic systems of the same kind
in temperature equilibrium, the number of systems present in the different
states may be deduced in the well known way from Boltzmann’s fundamen-
tal relation between entropy and probability, if we know the values of the
energy in these states and the a-priori probability to be ascribed to each state
in the calculation of the probability of the whole distribution. In contrast

0P Ehrenfest, loc.cit. In these papers the principle in question is called the adiabatic
hypothesis in accordance with the line of argumentation followed by Ehrenfest in which
considerations of thermodynamical problems play an important part. From the point of
view taken in the present paper, however, the above notation might in a more direct way
indicate the content of the principle and the limits of its applicability.




considerations of ordinary statistical mechanics we possess on the quantum
theory no direct of determining these a-priori probabilities, because we have
no detailed information about the mechanism of transition between the dif-
ferent stationary states. If the a-priori probabilities are known for the states
of a given atomic system, however, they may be deduced for any other sys-
tem which can be formed from this by a continuous transformation without
passing through one of the singular systems referred to below. In fact, in
examining the necessary conditions for the explanation of the second law
of thermodynamics Ehrenfest'! has deduced a certain general condition as
regards the variation of the a-priori probability corresponding to a small
change of the external conditions from which it follows, that the a- priori
probability of a given stationary state of an atomic system must remain un-
altered during a continuous transformation, except in special cases in which
the values of the energy in some of the stationary states will tend to coincide
during the transformation. In this result we possess, as we shall see, a ra-
tional basis for the determination of the a-priori probability of the different
stationary states of a given atomic system.

2. System of one degree of freedom

As the simplest illustration of the principles discussed in the former section
we shall begin by considering systems of a single degree of freedom, in which
case it has been possible to establish a general theory of stationary states.
This is due to the fact, that the motion will be simply periodic, provided the
distance between the parts of the system will not increase infinitely with
the time, a case which for obvious reasons cannot represent a stationary
state in the sense defined above. On account of this, the discussion of the
mechanical transformability of the stationary states can, as pointed out by
Ehrenfest!? for systems of one degree of freedom be based on a mechanical
theorem about periodic systems due to Boltzmann and originally applied by
this author in a discussion of the bearing of mechanics on the explanation
of the laws of thermodynamics. For the sake of the considerations in the
following sections it will be convenient here to give the proof in a form which
differs slightly from that given by Ehrenfest, and which takes also regard to

1P Ehresfest, Phys. Zeitschr. 15 (1914) 660. The above interpretation of this relation
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is taken in the form corresponding to the fundamental assumption I.
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the modifications in the ordinary laws of mechanics claimed by the theory
of relativity.

Consider for the sake of generality a conservative mechanical system of s
degrees of freedom, the motion of which is governed by Hamilton’s equations:

doe __OF - dax OB (4)
dt oqi’ dt  Opy’

where F is the total energy considered as a function of the generalised po-
sitional coodinates qi,...qs and the corresponding canonically conjugated
momenta p1,...ps. If the velocities are so small that the variation in the
mass of the particles due to their velocities can be neglected, the p’s are
defined in the usual way by

oT

= = k‘zl,...s
2 )

Pk
where T is the kinetic energy of the system considered as a function of the
generalised velocities ¢1, . .. 4s(dx = dgi/dt) and of g, ... qs. If the relativity
modifications are taken into account the p’s are defined by a similar set of
expressions in which the kinetic energy is replaced by T’ = Ymgc? - (1 —

1 — v?/c?), where the summation is to be extended over all the particles
of the system, and v is the velocity of one of the particles and mg its mass
for zero velocity, while c¢ is the velocity of light.

Let us now assume that the system performs a periodic motion with the
period o, and let us form the expression

I =/ > prde dt, (5)
0 1

which is easily seen to be independent of the special choice of coordinates
q1,- - - qs used to describe the motion of the system. In fact, if the variation
of the mass with the velocity is neglected we get

I:2/Tdt,
0

and if the relativity modifications are included, we get a quite analogous in

which the kinetic energy is replaced by 7" = & 3mgv?/,/1 — v2/c2.
Consider next some new periodic motion of the system formed by a small

variation of the first motion, but which may need the presence of external
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forces in order to be a mechanically possible motion. For the variation in I
we get then

s

S
= Z (Gk - 0 - P+ D Odr) di+ [ pr - et [,
1 1

where the last term refers to the variation of the limit of the integral due to
the variation in the period o. By partial integration of the second term in
the bracket under integral we get next

51:/ > (G 6k — P - 0qr) dt+ | pr- (- 0t + dai) |G,
1 1

where the last term is seen to be zero, because the term in the bracket as
well as pi will be the same in both limits, since the varied motion as well
as the original motion is assumed to be periodic. By means of equations (4)
we get therefore

51—/2 <8E 5- pk-i—g 5. qk> dt — /6Edt (6)

Let us now assume that the small variation of the motion is produced by
a small external field established at a uniform rate during a time interval 4,
long compared with o, so that the comparative increase during a period is
very small. In this case J F is at any moment equal to the total work done by
the external forces on the particles of the system since the beginning of the
establishment of the field. Let this moment be ¢t = —¢ and let the potential
of the external field at ¢ > 0 be given by 2, expressed as a function of the
¢’s. at any given moment ¢ > 0 we have then

0 S
B 19+t Z
-7

which gives by partial integration

0
§E = / Q dt — Q,
et

where the values for the ¢’s to be introduced in €2 in the first term are
those corresponding to the motion under the influence of the increasing
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external field, and the values to be introduced in the second term are those
corresponding to the configuration at the time ¢. neglecting small quantities
of the same order as the square of the external force, however, we may in
this expression for J E' instead of the values for the ¢’s corresponding to the
perturbed motion take those corresponding to the original motion of the
system. With this approximation the first term is equal to the mean value
of the second taken over a period o, and we have consequently

/ SE dt = 0. (7)
0

From (6) and (7) it follows that I will remain constant during the slow
establishment of the small external field, if the motion corresponding to a
constant value of the field is periodic. If next the external field corresponding
to 2 is considered as an inherent part of the system, it will be seen in the
same way that I will remain unaltered during the establishment of a new
small external field, and so on. Consequently I will be invariant for any
finite transformation of the system which is sufficiently slowly performed,
provided the motion at any moment during the process is periodic and the
effect of the variation is calculated on ordinary mechanics.

Before we proceed to the applications of this result we shall mention
a simple consequence of (6) for systems for which every orbit is periodic
independent of the initial conditions. In that case we may for the varied
motion take an undisturbed motion of the system corresponding to slightly
different initial conditions. This gives 0E constant, and from (6) we get
therefore

SE=w-0-1, (8)

where w = 1/0 is the frequency of the motion. This equation forms a simple
relation between the variations in £ and I for periodic systems, which will
be often used in the following.

Returning now to systems of one degree of freedom, we shall take our
starting point from Planck’s original theory of a linear harmonic vibrator.
according to this theory the stationary states of a system, consisting of a
particle executing linear harmonic vibrations with a constant frequency wy
independent of the energy, are given by the well known relation

E=n-h-w, (9)

where n is a positive entire number, h Planck’s constant, and E the total
energy which is supposed to be zero if the particle is at rest.
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From (8) it follows at once, that (9) is equivalent to

I:/p(jdt:/pdq:nh, (10)
0

where the latter integral is to be taken over a complete oscillation of ¢
between its limits. On the principle of the mechanical transformability of
the stationary states we shall therefore assume, following Ehrenfest, that
(10) holds not only for a Planck’s vibrator but for any periodic system of
one degree of freedom which can be formed in a continuous manner from a
linear harmonic vibrator by a gradual variation of the field of force in which
the particle moves. This condition is immediately seen to be fulfilled by
all such systems in which the motion is of oscillating type i.e. where the
moving particle during a period passes twice through any point of its orbit
once in each direction. If, however, we confine ourselves to systems of one
degree of freedom, it will be seen that system in which the motion is of
rotating type, i. e. where the particle during a period passes only through
every point of its orbit, cannot be formed in a continuous manner from a
linear harmonic vibrator without passing through singular states in which
the period becomes infinite long and the result becomes ambiguous . We
shall not here enter more closely on this difficulty which has been pointed
out by Ehrenfest, because it disappears when we consider systems of several
degrees of freedom, where we shall see that a simple generalisation of holds
for any system for which every motion is periodic.

As regards the application of (9) to statistical problems it was assumed
in Planck’s theory that the different states of the vibrator corresponding to
different values of n are a-priori equally probable, and this assumption was
strongly supported by the agreement obtained on this basis with the mea-
surements of the specific heat of solids at low temperatures. Now it follows
from the considerations of Ehrenfest, mentioned in the former section, that
the a-priori probability of a given stationary state is not changed by a con-
tinuous transformation, and we shall therefore expect that for any system of
one degree of freedom the different corresponding to different entire values
of n in ( 10) are a-priori equally probable.

As pointed out by Planck in connection with the application of (9), it is
simply seen that statistical considerations, based on the assumption of equal
probability for the different states given by (10), will show the necessary rela-
tion to considerations of ordinary statistical mechanics in the limit where the
latter theory has been found to give results in agreement with experiments.
Let the configuration and motion of a mechanical system be characterised
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by s independent variables qi,...qs and corresponding momenta pi,...ps,
and let the state of the system be represent in a 2s—dimensional phase—space
by a point with coordinates q1,...qs, p1,...ps. Then, according to ordinary
statistical mechanics, the probability for this point to lie within a small el-
ement in the phase-space is independent of the position and shape of this
element and simply proportional to its volume, defined in the usual way by

5W:/dq1...dq5dp1...ds. (11)

In the quantum theory, however, these considerations cannot be directly
applied, since the point representing the state of a system cannot be dis-
placed continuously in the 2s—dimensional phase—space, but can lie only on
certain surfaces of lower dimensions in this space. For systems of one degree
of freedom the phase—space is a two dimensional surface, and the points rep-
resenting the states of some system given by (10) will be situated on closed
curves on this surface. Now, in general, the motion will differ considerably
for any two states corresponding to successive entire values of n in (10), and
a simple general connection between the quantum theory and ordinary sta-
tistical mechanics is therefore out of question. In the limit, however, where
n is large, the motions in successive states will only differ very little from
each other, and it would therefore make little difference whether the points
representing the systems are distributed continuously on the phase—surface
or situated only on the curves corresponding to (10), provided the number
of systems which in the first case are situated between two such curves is
equal to the number which in the second case lies on one of these curves.
But it will be seen that this condition is just fulfilled in consequence of
the above hypothesis of equal a-priori probability of the different station-
ary states, because the element of phase—surface limited by two successive
curves corresponding to (10) is equal to

(5W:/dpdq:[/pdq]n—[/pdq]n_l:In—In_lzh, (12)

so that on ordinary statistical mechanics the probabilities for the point to
lie within any two such elements is the same. We see consequently that the
hypothesis of equal probability of the different states given by (10) gives
the same result as ordinary statistical mechanics in all such applications in
which the states of the great majority of the systems correspond to large
values of n. Considerations of this kind have led Debye!? to point out that

13P. Debye, Wolfskehl-Vortrag. Géttengen (1913).
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condition (10) might have a general validity for systems of one degree of
freedom, already before Ehresfest, on the basis of his theory of the mechan-
ical transformability of the stationary states, had shown that this condition
forms the only rational generalisation of Planck’s condition (9).

We shall now discuss the relation between the theory of spectra of atomic
systems of one degree of freedom, based on (1) and (10), and the ordinary
theory of radiation, and we shall see that this relation in several respects
shows a close analogy to the relation, just considered, between the statis-
tical applications of (10) and considerations based on ordinary statistical
mechanics. Since the values for the frequency w in two states corresponding
to different values of n in (10) in general are different, we see at once that
we cannot expect a simple connection between the frequency by (1) of the
radiation corresponding to a transition between two stationary states and
the motions of the system in these states, except in the limit where n is
very large, and where the ratio between the frequencies of the motion in
successive stationary states differs very little from unity. Consider now a
transition between the state corresponding to n = n’ and the state corre-
sponding to n = n”, and let us assume that n’ and n” are large numbers
and that n’ — n” is small compared with n’ and n”. In that case we may
in (8) for §F put E' — E” and for §I put I’ — I", we get therefore from (1)
and ( 10) for the frequency of the radiation emitted or absorbed during the
transition between the two states

1 w

V= —. E/ _ El/ —
h ( ) h
Now in a stationary state of a periodic system the displacement of the
particles in any given direction may always be expressed by means of a
Fourier—series as a sum of harmonic vibrations:

(I'=1")y=@mn-n") w (13)

E=XCr cos 2m- (T -w-t+c¢p), (14)

where the C’s and ¢’s are constants and the summation is to be extended
over all positive entire values of 7. On the ordinary theory of radiation we
should therefore expect the system to emit a spectrum consisting of a series
of lines of frequencies equal to 7w, but as it is seen, this is just equal to
the series of frequencies which we obtain from (13) by introducing different
values for n’ — n”. As far as the frequencies are concerned we see therefore
that in the limit where n is large there exists a close relation between the
ordinary theory of radiation and the theory spectra based on (1) and (10).
It may be noticed, however, that, while on the first theory radiations of the
different frequencies 7w corresponding to different values of 7 are emitted
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or absorbed at the same time, these frequencies will on the present theory,
based on the fundamental assumption I and II, be connected with entirely
different processes of emission or absorption corresponding to the transition
of the system from a given state to different neighbouring stationary states.

In order to obtain the necessary connection, mentioned in the former
section, to the ordinary theory of radiation in the limit of slow vibrations,
we must further claim that a relation, as that just proved for the frequencies,
will, in the limit of large n, hold also for the intensities of the different lines
in the spectrum. Since now on ordinary electrodynamics the intensities of
the radiations corresponding to different values of 7 are directly determined
from the coefficients C; in (14), we must therefore expect that for large
values of n these coefficients will on the quantum theory determine the
probability of spontaneous transition from a given stationary state for which
n = n’ to a neighbouring state for which n = n” = n’ — 7. Now, this
connection between the amplitudes of the different harmonic vibrations into
which the motion can be resolved, characterised by different values of 7, and
the probabilities of transition from a given stationary state to the different
neighbouring stationary states, characterized by different values of n’ — n”,
may clearly be expected to be of a general nature. Although, of course, we
cannot without a detailed theory of the mechanism of transition obtain an
exact calculation of the latter probabilities, unless n is large, we may expect
that also for small values of n the amplitude of the harmonic vibrations
corresponding to a given value of 7 will in some way give a measure for the
probability of a transition between two states for which n’ —n” is equal to .
Thus in general there will be a certain probability of an atomic system in a
stationary state to pass spontaneously to any other state of smaller energy,
but if for all motions of a given system the coefficients C' in (14) are zero for
certain values of 7, we are led to expect that no transition will be possible,
for which n’ — n’ is equal to one of these values.

A simple illustration of these considerations is offered by the linear har-
monic vibrator mentioned above in connection with Planck’s theory. Since
in this case C; is equal to zero for any 7 different from 1, we shall expect
that for this system only such transitions are possible in which n alters by
one unit. From (1) and (9) we obtain therefore the simple result that the
frequency of any radiation emitted or absorbed by a linear harmonic is equal
to the constant frequency wg. This result seems to be supported by obser-
vations on the absorption—spectra of diatomic gases, showing that certain
strong absorption-lines, which according to general evidence may be as-
cribed to vibrations of the two atoms in the molecule relative to each other,
are not accompanied by lines of the same order of intensity and correspond-
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ing to entire multipla of the frequency, such as it should be expected from (1)
if the system had any considerable tendency to pass between non—successive
states. In this connection it may be noted that the fact, that in the ab-
sorption spectra of some diatomic gases faint lines occur corresponding to
the double frequency of the main lines'* obtains a natural explanation by
assuming that for finite amplitudes the vibrations are not exactly harmonic
and that therefore the molecules possess a small probability of passing also
between non—successivestates.

3. Conditionally periodic systems

If we consider systems of several degrees of freedom the motion will be peri-
odic only in singular cases and the general conditions which determine the
stationary states cannot therefore be derived by means of the same simple
kind of considerations as in the former section. As mentioned in the intro-
duction, however, Sommerfeld and others have recently succeeded, by means
of a suitable generalisation of (10), to obtain conditions for an important
class of systems of several degrees of freedom, which, in connection with (1),
have been found to give results in convincing agreement with experimental
results about line—spectra. Subsequently these conditions have been proved
by Ehrenfest and especially Burgers'® to be invariant for slow mechanical
transformations.

To the generalisation under consideration we are naturally led; if we first
consider such systems for which the motions corresponding to the different
degrees of freedom are dynamically independent of each other. This occurs
if the expression for the total energy F in Hamilton’s equations (4) for a
system of s degrees of freedom can be written as a sum Fq+... E,, where Ej,
contains ¢ and pg only. An illustration of a system of this kind is presented
by a particle moving in a field of force in which the force-components normal
to three mutually perpendicular fixed planes are functions of the distances
from these planes respectively. Since in such a case the motion corresponding
to each degree of freedom in general will be periodic, just as for a system of
one degree of freedom, we may obviously expect that the condition ( 10) is

14See E.C. Kemble, Phys. Rev. 8 (1916) 701.
15J.M. Burgers, Versl. Akad. Amsterdam 25 (1917) 849, 918, 1055; Ann. d. Phys. 52
(1917) 195; Phil. Mag. 33 (1917) 514.




here replaced by a set of s conditions:

Ik:/pk-qu:nk-h, (k:1,...s) (15)

where the integrals are taken over a complete period of the different ¢’s
respectively, and where ni,...ns are entire numbers. It will be seen at once
that these conditions are invariant for any slow transformation of the system
for which the independency of the motions corresponding to the different
coordinates is maintained.

A more general class of systems for which a similar analogy with systems
of a single degree of freedom exists and where conditions of the same type as
(15) present themselves is obtained in the case where, although the motions
corresponding to the different degrees of freedom are not independent of
each other, it is possible nevertheless by a suitable choice of coordinates
to express each of the momenta p; as a function of ¢, only. A simple of
this kind consists of a particle moving in a plane orbit in a central field of
force. Taking the length of the radius—vector from the centre of the field
to the particle as ¢, and the angular distance of this radius—vector from
the centre of the field to the particle as g1, and the angular distance of this
radius—vector from a fixed line in the plane of the orbit as ¢o, we get at once
from (4), since E does not constant go, the well known result that during the
motion the angular momentum ps is constant and that the radial motion,
given by the variation of p; and ¢; with the time, will be exactly the same
as for a system of one degree of freedom. In his fundamental application of
the quantum theory to the spectrum of a non—periodic system Sommerfeld
assumed therefore that the stationary states of the above system are given
by two conditions of the form:

I1=/p1d(h=n1'h, IQZ/pgdqum-h. (16)

While the first integral obviously must be taken over a period of the
radial motion, there might at first sight seem to be a difficulty in fixing the
limits of integration of go. This disappears, however, if we notice that an
integral of the type under consideration will not be altered by a change of
coordinates in which ¢ is replaces by some function of this variable. In fact,
if instead of the angular distance of the radius—vector we take for gy some
continuous periodic function of this angle with period 2, every point in the
plane of the orbit will correspond to one set of coordinates only and the
relation between p and ¢ will be exactly of the same type as for a periodic
system of one degree of freedom for which the motion is of oscillating type.

18




It follows therefore that the integration in the second of the conditions (16)
has to be taken over a complete revolution of the radius—vector, and that
consequently this condition is equivalent with the simple condition that the
angular momentum of the particle round the centre of the field is equal to
an entire multiplum of h/27. As pointed out by Ehrenfest, the conditions
(16) are invariant for such special transformations of the system for which
the central symmetry is maintained. This following immediately from the
fact that the angular momentum in transformations of this type remains
invariant, and that the equations of motion for the radial coordinate as long
as pe remains constant are the same as for a system of one degree of freedom.
On the basis of (16), Sommerfeld has, as mentioned in the introduction,
obtained a brilliant explanation of the fine structure of the lines in the
hydrogen spectrum, due to the change of the mass of the electron with
its velocity.!® To this theory we shall come back in Part II. As pointed by
Epstein!” and Schwarzschild'® the central systems considered by Sommerfeld
form a special case of a more general class of systems for which conditions of
the same type as (15) may be applied. These are the socalled conditionally
periodic systems, to which we are led if the equations of motion are discussed
by means of the Hamilton-Jacobi partial differential equation.'® In the
expression for the total energy E as a function of the ¢’s and the p’s, let the
latter quantities be replaced by the partial differential coefficients of some
function S with respect to the corresponding ¢’s respectively, and consider
the partial differential equation:

o o555y,
qu"‘q87 aq17"'aq8 - 17

61n this connection it may be remarked that conditions of the type as (16) were proposed
independently by W. Wilson [Phil. Mag. 29 (1915) 795 and 31 (1916) 156] but by him
applied only to the simple Keplerian motion described by the electron in the hydrogen
atom if the relativity modifications are neglected. Due to the singular position of periodic
systems in the quantum theory of systems of several degrees of freedom this application,
however, involves, as it will appear from the following discussion, an ambiguity which
deprives the result of an immediate physical interpretation. Conditions analogous to (16)
have also been established by Planck in his interesting theory of the physical structure of
the phase space of systems of several degrees of freedom [Verh. d. D. Phys. Ges. 17 (1915)
407 and 438; Ann. d. Phys. 50 (1916) 385]. This theory, which has no direct relation to
the problem of line—spectra discussion in the present paper, rests upon a profound analysis
of the geometrical problem of dividing the multiple-dimensional space corresponding to a
system of several degrees of freedom into ‘cells’ in a way analogous to the division of the
phase surface of a system of one degree of freedom by the curves given by (10).

17p. Epstein, loc. cit.

18K . Schwarzschild, loc. cit.

19See f. inst. C.V.L. Charlier, Die Mechanik des Himmels, Bd. I, Abt. 2.
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obtained by putting this expression equal to an arbitrary constant ;.
If then
S=F-(q,...qs, Q1,...05)+C,

where a1, ...as and C are arbitrary constants like a4, is a total integral of
(17), we get, as shown by Hamilton and Jacobi, the general solution of the
equations of motion (4) by putting

oS 0S8

ﬂ:t+ﬂl’ @:ﬁka (k:278) (18)

oS

where ¢ is the time and (1, ... 0s a new set of arbitrary constants. By means
of (18) the ¢’s are given as functions of the time ¢ and the 2s constants
Qai,...as, B1,...0s which may be determined for instance from the values
of the ¢’s and ¢’s at a given moment.

Now the class of systems, referred to, is that for which, for a suitable
choice of orthogonal coordinates, it is possible to find a total integral of (17)
of the form

S = Z Sk - (qk, 0a,...qs), (20)
1

where Sy is a function of the s constants ag,...as and of ¢ only. In this
case, in which the equation (17) allows of which is called ‘separation of
variables’, we get from (19) that every p is a function of the a’s and of the
corresponding ¢ only. If during the motion the coordinates do not become
infinite in the course of time or converge to fixed limits, every ¢ will, just
as for systems of one degree of freedom, oscillate between two fixed values,
different for the different ¢’s and depending on the a’s. Like in the case of
a system of one degree of freedom, p; will become zero and change its sign
whenever ¢, passes through one of these limits. Apart from special cases,
the system will during the motion never pass twice through a configuration
corresponding to the same set of values for the ¢’s and p’s, but it will in
the course of time pass within any given, however small, distance from any
configuration corresponding to a given set of values q1,...qs, representing
a point within a certain closed s—dimensional extension limits by s pairs of
(s—1) — dimensional surface corresponding to constant values of the ¢’s equal
to the above mentioned limits of oscillation. A motion of this kind is called
‘conditionally periodic’. It will be seen that the character of the motion
will depend only on the a’s and not on the §’s, which latter constants serve
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only to fix the exact configuration of the system at a given moment, when
the a’s are known. For special systems it may occur that the orbit will not
cover the above mentioned s—dimensional extension everywhere dense, but
will, for all values of the a’s, be confined to an extension of less dimensions.
Such a case we will refer to in the following as a case of ‘degeneration’.
Since for a conditionally periodic system which allows of separation in
the variables q1, . .. g5 the p’s are functions of the corresponding ¢’s only, we
may, just as in the case of independent degrees of freedom or in the case of
quasiperiodic motion in a certain field, from a set of expressions of the type

IkZ/pk'(Qk,al,.--as)'ko, (k=1,...5) (21)

where the integration is taken over a complete oscillation of g;. As, in
general, the orbit will cover everywhere dense an s—dimensional extension
limited in the characteristic way mentioned above, it follows that, except in
cases of degeneration, a separation of variables will not be possible for two
different sets of coordinates q1,...¢s and ¢}, ... g%, unless g1 = f1(q}),...qs =
fs(q.), and since a change of coordinates of this type will not affect the
values of the expressions (21), it will be seen that the values of the I's are
completely determined for a given motion of the system. By putting

Ik:nk-h, (k:1,...8) (22)

where ni,...ns are positive entire numbers, we obtain therefore a set of
conditions which form a natural generalisation of condition (10) holding for
a system of one degree of freedom.

Since the I’s, as given by (21), depend on the constants aj,...as only
and not on the 3’s, the a’s may, in general, inversely be determined from the
values of the I’s. The character of the motion will therefore, in general, be
completely determined by the conditions ( 22), and especially the value for
the total energy, which according to (17) is equal to a;, will be fixed by them.
In the cases of degeneration referred to above, however, the conditions (22)
involve an ambiguity, since in general for such systems there will exist an
infinite number of different sets of coordinates which allow of a separation of
variables, and which will lead to different motions in the stationary states,
when these conditions are applied. As we shall see below, this ambiguity
will not influence the fixation of the total energy in the stationary states,
which is the essential factor in the theory of spectra based on (1) and in the
applications of the quantum theory to statistical problems.

A well known characteristic example of a conditionally periodic system
is afforded by a particle moving under the influence of the attractions from
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two fixed centres varying as the inverse squares of the distance apart, if the
relativity modifications are neglected. As shown by Jacobi this problem can
be solved by a separation of variables if so called elliptical coordinates are
used, i.e. if for ¢; and g2 we take two parameters characterising respectively
an ellipsoid and a hyperboloid of revolution with the centres as foci and
passing through the instantaneous position of the moving particle, and for
q3 we take the angle between the plane through the particle and the centres
and a fixed plane through the latter points, or, in closer conformity with the
above general description, some continuous periodic function of this angle
period 27. A limiting case of this problem is afforded by an electron rotating
a positive nucleus and subject to the effect of an additional homogeneous
electric field, because this field may be considered as arising from a second
nucleus at infinite distance apart from the first. The motion in this case
will therefore be conditionally periodic and allow a separation of variables
in parabolic coordinates, if the nucleus is taken as focus for both sets of
paraboloids of revolution, and their axes are taken parallel to the direction
of the electric force. By applying the conditions (22) to this motion Epstein
and Schwarschild have, as mentioned in the introduction, independent of
each other, obtained an explanation of the effect of an external electric field
on the lines of the hydrogen spectrum, which was found to be convincing
agreement with Stark’s measurements. To the results of these calculations
we shall return in Part II.

In the above way of representing the general theory we have followed
the same procedure as used by Epstein. By introducing the so called ‘an-
gle variables’ well known from the astronomical theory of perturbations,
Schwarzschild has given the theory a very elegant form in which the analogy
with systems of one degree of freedom presents itself in a somewhat different
manner. The connection between this treatment and that given above has
been discussed in detail by Epstein.?®

As mentioned above the conditions (22), first established from analogy
with systems of one degree of freedom, have subsequently been proved gener-
ally to be mechanically invariant for any slow transformation for which the
system remains conditionally periodic. The proof of this invariance has been
given quite recently by Burgers?! by means of an interesting application of
the theory of contact—transformations based on Schwarzschild’s introduction
of angle variables. We shall not enter here on these calculations but shall

20p. Epstein, Ann. d. Phys. 51 (1916) 168. See also Note on page 33 of the present

paper.
21 J.M. Burgers, loc. cit. Versl. Akad. Amsterdam 25 (1917) 1055.




only consider some points in connection with the problem of the mechanical
transformability of the stationary states which are of importance for the log-
ical consistency of the general theory and for the later applications. In § 2
we saw that in the proof of the mechanical invariance of relation (10) for a
periodic system of one degree of freedom, it was essential that the compara-
tive variation of the external conditions during the time of one period could
be made small. This may be regarded as an immediate consequence of the
nature of the fixation of the stationary states in the quantum theory. In fact
the answer to the question whether a given state of a system is stationary,
will not depend only on the motion of the particles at a given moment or
on the field of force in the immediate neighbourhood of their instantaneous
positions, but cannot be given before the particles have passed through a
complete cycle of states, and so to speak have got to know the entire field of
force of influence on the motion. If thus, in the case of a periodic system of
one degree of freedom, the field of force is varied by a given amount, and if
its comparative variation within the time of a single period was not small,
the particle would obviously have no means to get to know the nature of the
variation of the field and to adjust its stationary motion to it, before the
new field was already established. For exactly the same reasons it is nec-
essary condition for the mechanical invariance of the stationary states of a
conditionally periodic system, that the alteration of the external conditions
during an interval in which the system has passed approximately through all
possible configurations within the above mentioned s—dimensional extension
in the coordinate— space can be made as small as we like. This condition
forms therefore also an essential point in Burgers’ proof of the invariance
of the conditions (22) for mechanical transformations. Due to this we meet
with a characteristic difficulty when during the transformation of the system
we pass one of the cases of degeneration mentioned above, where, for every
set of values for the a’s, the orbit will not cover the s—dimensional extension
everywhere dense, but will be confined to an extension of less dimensions. It
is clear that, when by a slow transformation of a conditionally periodic sys-
tem we approach a degenerate system of this kind, the time—interval which
the orbit takes to pass to any possible configuration will tend to be very long
and will become infinite when the degenerate system is reached. As a con-
sequence of this the conditions ( 22) will generally not remain mechanically
tnvariant when we pass a degenerate system, what has intimate connection
with the above mentioned ambiguity in the determination of the stationary
states of such systems by means of (22).

A typical case of a degenerate system, which may serve as an illustration
of this point, is formed by system of several degrees of freedom for which
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every motion is simply periodic, independent of the initial conditions. In this
case, which is of great importance in the physical applications, we have from
(5) and (21), for any set of coordinates in which a separation of variables is
possible,

g
I:/(p1q1+...+psqs) dt = k1 + ...+ Kkslg, (23)
0

where the integration is extended over one period of the motion, and where
K1,...Ks are a set of positive entire numbers without a common divisor.
Now we shall expect that every motion, for which it is possible to find a set
of coordinates in which it satisfied (22), will be stationary.

For any such motion we get from (23)

I=(k1-n1+...+Ks ng)-h=nh, (24)

where n is a whole number which may take all positive values if, as in
the applications mentioned below, at least one of the x’s is equal to one.
Inversely, if the system under consideration allows of separation of variables
in an infinite continuous multitude of sets of coordinates, we must conclude
that generally every motion which satisfies (24) will be stationary, because
in general it will be possible for any such motion to find a set of coordinates
in which it satisfied also (22). It will thus be seen that, for a periodic system
of several degrees of freedom, condition (24) forms a simple generalisation of
condition (1)). From relation (8), which holds for two neighbouring motions
of any periodic system, it follows further that the energy of the system will
be completely determined by the value of I, just as for systems of one degree
of freedom.

Consider now a periodic system in some stationary state satisfying (24),
and let us assume that an external field is slowly established at a continuous
rate and that the motion at any moment during this process allows of a
separation of variables in a certain set of coordinates. If we would assume
that the effect of the field on the motion of the system at any moment could
be calculated directly by means of ordinary mechanics, we would find that
the values of the I’s with respect to the latter coordinates would remain
constant during the process, but this would involve that the values of the
n’s in (22) would in general not be entire numbers, but would depend en-
tirely on the accidental motion, satisfying ( 24), originally possessed by the
system. That mechanics, however, cannot generally be applied directly to
determine the motion of a periodic system under influence of an increasing
external field, is just what we should expect according to the singular po-
sition of degenerate system as regards mechanical transformations. In fact,
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in the presence of a small external field, the motion of a periodic system
will undergo slow variations as regards the shape and position of the orbit,
and if the perturbed motion is conditionally periodic these variations will
be of a periodic nature. Formally, we may therefore compare a periodic
system exposed to an external field with a simple mechanical system of one
degree of freedom in which the particle performs a slow oscillating motion.
Now the frequency of a slow variation of the orbit will be seen to be pro-
portional to the intensity of the external field, and it is therefore obviously
impossible to establish the external field at a rate so slow that the com-
parative change of its intensity during a periodic of this variation is small.
The process which takes place during the increase of the field will thus be
analogous to that which takes place if an oscillating particle is subject to
the effect of external forces which change considerably during a period. Just
as the latter generally will give rise to emission or absorption of radiation
and cannot be described by means of ordinary mechanics, we must expect
that the motion of a periodic system of several degrees of freedom under the
establishment of the external field cannot be determined by ordinary me-
chanics, but that the field will give rise to effects of the same kind as those
which occur during a transition between two stationary states accompanied
by emission or absorption of radiation. Consequently we shall expect that,
during the establishment of the field, the system will in general adjust itself
in some unmechanical way until a stationary state is reached in which the
frequency (or frequencies) of the above mentioned slow variation of the orbit
has a relation to the additional energy of the system due to the presence of
the external field, which is of the same kind as the relation, expressed by
(8) and (10), between the energy and frequency of a periodic system of one
degree of freedom. As it will be shown in Part II in connection with the
physical applications, this condition is just secured if the stationary states
in the presence of the field are determined by the conditions (22), and it
will be seen that these considerations offer a means of fixing the stationary
states of a perturbed periodic system also in cases where no separation of
variables can be obtained.

In consequence of the singular position of the degenerate systems in
the general theory of stationary states of conditionally periodic systems, we
obtain a means of connecting mechanically two different stationary states
of a given system through a continuous series of stationary states without
passing through systems in which the forces are very small and the energies
in all the stationary states tend to coincide (comp. page 9). In fact, if we
consider a given conditionally periodic system which can be transformed in
a continuous way into a system for which every orbit is periodic and for
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which every state satisfying (24) will also satisfy (22) for a suitable choice
of coordinates, it is clear in the first place that it is possible to pass in a
mechanical way through a continuous series of stationary states from a state
corresponding to a given set of values of the n’s in (22) to any other such
state for which kini + ... + Ksns possesses the same value. If, moreover,
there exists a second periodic system of the same character to which the first
periodic system can be transformed continuously, but for which the set of x’s
is different, it will be possible in general by a suitable cyclic transformation
to pass in a mechanical way between any two stationary states of the given
conditionally periodic system satisfying (22).

To obtain an example of such a cyclic transformation let us take the system
consisting of an electron which moves round a fixed positive nucleus exerting an
attraction varying as the inverse square of the distance. If we neglect the small rel-
ativity corrections, every orbit will be periodic independent of the initial conditions
and the system will allow of separation of variables in polar coordinates as well as
in any set of elliptical coordinates, of the kind mentioned on page 23, if the nucleus
is taken as one of the foci. It is simply seen that any orbit which satisfies (24) for
a value of n > 1, will satisfy (22) for a suitable choice of elliptical coordinates. By
imagining another nucleus of infinite small charge placed at the other focus, the
orbit may further be transformed into another which satisfies (24) for the same
value of n but which may have any given value for the eccentricity. Consider now a
state of the system satisfying (24), and let us assume that by the above means the
orbit is originally so adjusted that in plane polar coordinates it will corresponding
tony =m and ng = n—m in (16). Let then the system undergo a slow continuous
transformation during which the field of force acting on the electron remains cen-
tral, but by which the law of attraction is slowly varied until the force is directly
proportional to the distance apart. In the final state, as well as in the original state,
the orbit of the electron will be closed, but during the transformation the orbit will
not be closed, and the ratio between the mean period of revolution and the period
of the radial motion, which in the original motion was equal to one, will during the
transformation increase continuously until in the final state it is equal to two. This
means that, using polar coordinates, the values of x; and k3 in (22) which for the
first state are equal to k1 — ko = 1, will be for the second state k1 = 2 and k1 = 1.
Since during the transformation n; and no will keep their values, we get therefore
in the final state I = h- (2m+ (n —m)) = h- (n+m). Now in the latter state, the
system allows a separation of variables not only in polar coordinates but also in any
system of rectangular Cartesian coordinates, and by suitable choice of the direction
of the axes, we can obtain that any orbit, satisfying ( 24) for a value of n > 1, will
also satisfy (22). By an infinite small change of the force components in the axes, in
such a way that the motions of these directions remain independent of each other
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but possess slightly different periods, it will further be possible to transform the
elliptical orbit mechanically into one corresponding to any ratio between the axes.
Let us now assume that in this way the orbit of the electron is transformed into
a circular one, so that, returning to plane polar coordinates, we have n; = 0 and
ny = n + m, and let then by a slow transformation the law of attraction be varied
until again it is that of the inverse square. It will be seen that when this state is
reached the motion will again satisfy (24), but this time we will have I = h-(n+m)
instead of I = nh as in the original state. By repeating a cyclic process of this kind
we may pass from any stationary state of the system in question which satisfies
(24) for a value of n > 1 to any other such state without leaving at any moment
the region of stationary states.

The theory of the mechanical transformability of the stationary states
gives us a means to discuss the question of the a-priori probability of the
different states of a conditionally periodic system, characterised by different
sets of values for the n’s in (22). In fact from the considerations, mentioned
in § 1, it follows that, if the a—priori probability of the stationary states of
a given system is known, it is possible at once to deduce the probabilities
for the stationary states of any other system to which the first system can
be transformed continuously without passing through a system of degen-
eration. Now from the analogy with systems of one degree of freedom it
seems necessary to assume that, for a system of several degrees of freedom
for which the motions corresponding to the different coordinates are dynam-
ically independent of each other, the a—priori probability is the same for all
states corresponding to different sets of n’s in (15). According to the above
we shall therefore assume that the a—priori probability is the same for all
states, given by (22), of a by which can be formed in a continuous way from
a system of this kind without passing through systems of degeneration. It
will be observed that on this assumption we obtain exactly the same rela-
tion to the ordinary theory of statistical mechanics in the limit of large n’s
as obtained in the case of systems of one degree of freedom. Thus, for a
conditionally periodic system, the volume given by (11) of the element of
phase—space, including all points q1,...¢s, p1,...ps which represent states
for which the value of Ij given by (21) lies between I} and Iy + dI} it seen
at once to be equal to??

SW = 61,61, ... 01, (25)

if the coordinates are so chosen that the motion corresponding to every

22Comp. A. Sommerfeld, Ber. Akad. Miinchen, 1917, p. 83.
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degree of freedom is of oscillating type. The volume of the phase—space
limited by s pairs of surfaces, corresponding to successive values for the n’s
in the conditions (22), will therefore be equal to h® and consequently be the
same for every combination of the n’s. In the limit where the n’s are large
numbers and the stationary states corresponding to successive values for the
n’s differ only very little from each other, we thus obtain the same result
on the assumption of equal a—priori probability of all the stationary states,
corresponding to different sets of values of ny,ng,...ns in (22), as would be
obtained by application of ordinary statistical mechanics.

The fact that the last considerations hold for every non—degenerate con-
ditionally periodic system suggests the assumption that in general a— priori
probability will be the same for all the states determined by (22), even if it
should not be possible to transform the given system into a system of in-
dependent degrees of freedom without passing through degenerate systems.
This assumption will be shown to be supported by the consideration of the
intensities of the different components of the Stark—effect of the hydrogen
lines, mentioned in the next Part. When we consider a degenerate system,
however, we cannot assume that the different stationary states are a—priori
equally probable. In such a case the stationary states will be characterized
by a number of conditions less than the number of degrees of freedom, and
the probability of a given state must be determined from the number of dif-
ferent stationary states of some non—degenerate system which will coincide
in the given state, if the latter system is continuously transformed into the
degenerate system under consideration.

In order to illustrate this, let us take the simple case of a degenerate sys-
tem formed by an electrified particle moving in the plane orbit in a central
field, the stationary states of which are given by the two conditions (16).
In this case the plane of the orbit is undetermined, and it follows already
from a comparison with ordinary statistical mechanics, that the a—priori
probability of the states characterized by different combinations of n; and
ng in (16) cannot be the same. Thus the volume of the phase-space, cor-
responding to states for which I; lies between and I; and I; + §I; and for
which I lies between I and I + 615 , is found by a simple calculation?3
to be equal to 6W = 215011015, if the motion is described by ordinary po-
lar coordinates. For large values of n; and ns, we must therefore expect
that the a—priory probability of a stationary state corresponding to a given
combination (n1,ny) is proportional to ng. The question of the a—priori
probability of states corresponding to small values of the n’s has been dis-

238ee A. Sommerfeld, loc. cit.




cussed by Sommerfeld in connection with the problem of the intensities of
the different components in the fine structure of the hydrogen lines (see
Part II). From considerations about the volume of the extensions in the
phase— space, which might be considered as associated with the states char-
acterised by different combinations (ni,mn2), Sommerfeld proposes several
different expressions for the a—priori probability of such states. Due to the
necessary arbitrariness involved in the choice of these extensions, however.
we cannot in this way obtain a rational determination of the a—priori prob-
ability of states corresponding to small values of n; and ns. On the other
hand, this probability may be deduced by regarding the motion of the sys-
tem under consideration as the degeneration of a motion characterised by
three numbers ni,ns and ng, as in the general applications of the conditions
(22) to a system of three degrees of freedom. Such a motion may be ob-
tained for instance by imagining the system placed in a small homogeneous
magnetic field. In certain respects this case falls outside the general theory
of conditionally periodic system discussed in this section, but, as we shall
see in Part II, it can be simply shown that the presence of the magnetic
field imposes the further condition on the motion in the stationary states
that the angular momentum round the axis of the field is equal to n’h/2m,
where, n’ is a positive entire number equal to or less than no, and which
for the system considered in the spectral problems must be assume to be
different from zero. when regard is taken to the two opposite directions in
which the particle may rotate round the axis of the field, we see therefore
that for this system a state corresponding to a given combination of n; and
ng in the presence of the field can be established in 2ny different ways. The
a—priori probability of the different states of the system may consequently
for all combinations of ny and ny be assumed to be proportional to ns.

The assumption just mentioned that the angular momentum round the
axis of the field cannot be equal to zero is deduced from considerations
of system for which the motion corresponding to special combinations of
the n’s in (22) would become physically impossible due to some singularity
in its character. In such cases we must assume that no stationary states
exist corresponding to the combinations (n1,ng,...ns) under consideration,
and on the above principle of the invariance of the a—priori probability for
continuous transformations we shall accordingly expect that the a—priori
probability of any other state, which can be transformed continuously into
one of these states without passing through cases of degeneration, will also
be equal to zero.

Let us now produced to consider the spectrum of a conditionally periodic
system, calculated from the values of the energy in the stationary states by
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means of relation (1). If E - (n1,...n,) is the total energy of a stationary
state determined by (22) and if v is the frequency of the line corresponding
to the transition between two stationary states characterised by nj = nj,
and ny = nj, respectively, we have

v= (B ()~ B ()] (26)

In general, this spectrum will be entirely different from the spectrum
to be expected on the ordinary theory of electrodynamics from the motion
of the system. Just as for a system of one degree of freedom we shall see,
however, that in the limit where the motions in neighbouring stationary
states differ very little from each other, there exists a close relation between
the spectrum calculated on the quantum theory and that to be expected on
ordinary electrodynamics. As in § 2 we shall further see, that this connection
leads to certain general considerations about the probability of transition
between any two stationary states and about the nature of the accompanying
radiation which are found to be supposed by observations. In order to
discuss this question we shall first deduce a general expression for the energy
difference between neighbouring of a conditionally periodic system, which
can be simple obtained by a calculation analogous to that used in § 2 in the
deduction of the relation (8).

Consider some motion of a conditionally periodic system which allows
of separation of variables in a certain set of coordinates q1,...¢s and let us
assume that at the time t = 1 the configuration of the system will to a
close approximation be the same as at the time t = 0. By taking ¢ large
enough we can make this approximation as close as we like. If next we
consider some conditionally periodic motion, obtained by a small variation
of the first motion, and which allows of separation of variables in a set of
coordinates ¢i, ... ¢, which may differ slightly from the set ¢, ...qs, we get
by means of Hamilton’s equations (4), using the coordinated ¢, ... ¢’,

r [N OF
/ /
0/ SF dt 0/ ; (8% pj, + ol 5qk> dt

S

9
:/ > (dw - ) — pf, - q3,) dt.
0 1

By partial integration of the second term in the bracket this gives:
9
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Now we have for the unvaried motion
19 S 19 S S
/ > pk'q'kdtZ/ > predr dt = Ny - I,
0 1 0 1 1

where I is defined by (21) and where Nj is the number of oscillations
performed by ¢ in the time interval 9. For the varied motion we have on
the other hand:

S S

9 g t=19 s
[ 30 phddr= [ 3T hdd =30 N fr ]S oo i
o 1 t=0 1 1 1

where the I’s correspond to the conditionally periodic motion in the coor-
dinates ¢f,...q., and the §¢"’s which enter in the last term are the same
as those in (27). writing I, — I, = 6 - I, we get therefore from the latter
equation

9 S
/ §E dt = Nyl (28)
0 1

In the special case where the varied motion is an undisturbed motion
belonging to the same system as the unvaried motion we get, since § - F will
be constant,

0F = Z Wi - (5Ik, (29)
1

where wy = Ni /¥ is the mean frequency of oscillation of ¢ between its
limits, taken over a long time interval of the same order of magnitude as
9. This equation forms a simple generalisation of (8), and in the general
case in which a separation of variables will be possible only for one system
of coordinates leading to a complete definition of the I’s it might have been
deduced directly from the analytical theory of the periodicity properties of
the motion of a conditionally periodic system, based on the introduction of
angle variables.?* From (29) it follows moreover that, if the system allows of
a separation of variables in an infinite continuous of sets of coordinates, the

24Gee Charlier, die Mechanik des Himmels, bd. I abt. 2, and especially P. Epstein,
Ann. d. Phys. 51 (1916) 178. By means of the well known theorem of Jacobi about the
change of variables in the canonical equations of Hamilton, the connection between the
notion of angle—variables and the quantities I, discussed by Epstein in the latter paper,
may be briefly exposed in the following elegant manner which has been kindly pointed out
to me by Mr. H.A. Kramers. Consider the function S(qu,...qs, I1,...Is) obtained from
(20) by introducing for the a’s their expressions in terms of the I’s given by the equations
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(21). This function will be a many valued function of the ¢’s which increases by I} if
qr described one oscillation between its limits and comes back to its original value while
the other ¢’s remain constant. If we therefore introduce a new set of variables w1, ... ws
defined by

WE =

o (k=1..9) (1%)

it will be seen that wy increases by one unit while the other w’s will come back to their
original values if g, described one oscillation between its limits and the other ¢’s remain
constant. Inversely it will therefore be seen that the ¢’s, and also the p’s which were given
by
oS
= —, k e 2%
b | 2)

when considered as functions of the I’s and w’s will be periodic functions of every of the w’s
with period. according to Fourier’s theorem any of the ¢’s may therefore be represented
by an s—double trigonometric series of the form

Pk

q= Z A7'1w~7's cos 2w - (7']_ W1t Ts s Ws = Ol-rl...'rg)v (3*)

where the A’s and «’s are constants depending on the I’s and where the summation is
to be extended over all entire values of 71,...7s. On account of this property of the w’s,
the quantities 27wz, ... 27w, are denoted as ‘angle variables’. Now from (1) and (2%)
it follows according to the above mentioned theorem of Jacobi (see for instance Jacobi,
Vorlesungen tiber Dynamik § 37) that the variations with the time of the I’s and w’s will
be given by
dh _ OF - dwe OB gy (4%)
dt owy, dt ol
where the energy F is considered as a function of the I's and w’s. Since E, however,
is determined by the I’s only we get from (4*), besides the evident result that the I’s
are constant during the motion, that the w’s will vary linearly with the time and can be

represented by
OF

oI’
where 0 is a constant, and where wy, is easily seen to be equal to the mean frequency of
oscillation of gx. From (5%) eq. (28) follows at once, and it will further be seen that by
introducing (5*) in (3*) we get the result that every of the ¢’s, and consequently also any
one—valued function of the ¢’s, can be represented by an expression of the type (31).

In this connection it may be mentioned that the method of Schwarzschild of fixing the
stationary states of a conditionally periodic system, mentioned on page 117, consists in
seeking for a given system a set of canonically conjugated variables Q1,...Qs, Pi,...Ps
in such a way that the positional coordinates of the system g, ...qs and their conjugated
momenta pi,...ps, when considered as functions of the ’s and P’s, are periodic in every
of the @’s with period 27, while the energy of the system depends only on the P’s. In
analogy with the condition which fixes the angular momentum in Sommerfeld’s theory
of central systems Schwarzschild next puts every of the P’s equal to an entire multiplum
of h/2x. In contrast to the theory of stationary states of conditionally periodic systems
based on the possibility of separation of variables and the fixation of the I's by (22), this
method does not lead to an absolute fixation of the stationary states, because, as pointed
out by Schwarzschild himself, the above definition of the P’s leaves an arbitrary constant
undermined in every of these quantities. In many cases, however, these constants may be

wk = wikt + 0, Wk (k::l,...s) (5*)
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total energy will be the same for all motions corresponding to the same values
of the I’s, independent of the special set of coordinates used to calculate
these quantities. as mentioned above and as we have already shown in the
case of purely periodic systems by means of (8), the total energy is therefore
also in cases of degeneration completely determined by the conditions (22).

Consider now a transition between two stationary states determined by
(22) by putting ny = nj, and nj, = nj respectively, and let us assume that
ny,...n%, nf,...nY are large numbers, and that the differences nj — nj are
small compared with these numbers. Since the motions of the system in these
states will differ relatively very little from each other we may calculate the
difference of the energy by means of (29), and we get therefore, by means
of (1), for the frequency of the radiation corresponding to the transition
between the two states

S S

1
= (BB = Y e (I =Y e (), (30)
1 1

which is seen to be a direct generalisation of the expression (13) in § 2.

Now, in complete analogy to what is the case for periodic systems of
one degree of freedom, it is proved in the analytical theory of the motion of
conditionally periodic mentioned above that for the latter systems the co-
ordinates qi, . .. ¢s, and consequently also the displacements of the particles
in any given direction, may be expressed as a function of the time by an
s—double infinite Fourier series of the form:

&= Z Crrgrcos2m{(m1 w1 +...7Ts - ws) -t +¢rm by (31)

where the summation is to be extended over all positive and negative entire
values of the 7’s, and where the w’s are the above mentioned mean frequen-
cies of oscillation for the different ¢’s. The constants C;, ., depend only
on the a’s in the equations (18) or, what is the same, on the I’s, while the
constants c; ., depend on the a’s as well as on the 3’s. In general the
quantities 1wy +. .. Tsws Will be different for any two different sets of values
for the 7’s, and in the course of time the orbit will cover everywhere dense a

simple determined from considerations of mechanical transformability of the stationary
states, and as pointed out by Burgers [loc. cit. Versl. Akad. Amsterdam 25 (1917)
1055] Schwaszschild method possesses on the other hand the essential advantage of being
applicable to certain classes of system in which the displacements of the particles may
be represented by trigonometric series of the type (31), but for which the equations of
motion cannot be solved by separation of variables in any fixed set of coordinates. An
interesting application of this to the spectrum of rotating molecules, given by Burgers,
will be mentioned in Part IV.




certain s—dimensional extension. In a case of degeneration, however, where
the orbit will be confined to an extension of less dimensions, there will exist
for all values of the a’s one or more relations of the type miwi+. .. msws =0
where the m’s are entire numbers and by the introduction of which the ex-
pression (31) can be reduced to a Fourier series which is less than s—double
infinite. Thus in the special case of a system of which every orbit is periodic
we have wi/k1 = ... = ws/Kks = w, where the k’s are the numbers which
enter in eq. (23), and the Fourier series for the displacements in the dif-
ferent directions will in this case consist only of terms of the simple form
Cr-cos2m-{7-w-t+c}, just as for a system of one degree of freedom.

On the ordinary theory of radiation, we should expect from (31) that
the spectrum emitted by the system in a given state would consist of an
s—double infinite series of lines of frequencies equal to Tw; + ... Tsws. In
general, this spectrum would be completely different from that given by (26).
This follows already from the fact that the w’s will depend on the values for
the constants asq, . .. as and will vary in a continuous way for the continuous
multitude of mechanically possible states corresponding to different sets of
values for these constants. Thus in general the w’s will be quite different for
two different stationary states corresponding to different sets of n’s in (22),
and we cannot expect any close relation between the spectrum calculated
on the quantum theory and that to be expected on the ordinary theory of
mechanics and electrodynamics. In the limit, however, where the n’s in
(22) are large numbers, the ratio between the w’s for two stationary states,
corresponding to ny = nj, and nj = n) respectively, will tend to unity if
the differences nj, = nj are small compared with the n’s, and as seen from
(30) the spectrum calculated by (1) and (22) will in this limit just tend to
coincide with that to be expected on the ordinary theory of radiation from
the motion of the system.

As far as the frequencies are concerned, we thus see that for condition-
ally periodic systems there exists a connection between the quantum theory
and the ordinary theory of radiation of exactly the same character as that
shown in § 2 to exist in the simple case of periodic systems of one degree
of freedom. Now on ordinary electrodynamics the coefficients C, . -, in the
expression (31) for the displacements of the particles in the different direc-
tions would in the well known determine the intensity and polarisation of
the emitted radiation of the corresponding frequency mwi + ... 7sws. As for
systems of one degree of freedom we must therefore conclude that, in the
limit of large values for the n’s, the probability of spontaneous transition
between two stationary states of a conditionally periodic system, as well as
the polarisation of the accompanying radiation, can be determined directly
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from the values of the coefficient C;, - in (31) corresponding to a set of
7’s given by 7, = nj, —ny, if n},...n, and nf,...nY are the numbers which
characterise the two stationary states.

Without a detailed theory of the mechanism of transition between the
stationary states we cannot, of course, in general obtain an exact determi-
nation of the probability of spontaneous transition between two such states,
unless the n’s are large numbers. Just as in the case of systems of one degree
of freedom, however, we are naturally led from the above considerations to
assume that, also for values of the n’s which are not large, there must exist
an intimate connection between the probability of a given transition and
the values of the corresponding Fourier coefficient in the expressions for the
displacements of the particles in the two stationary states. This allows us at
once to draw certain important conclusions. Thus, from the fact that in gen-
eral negative as well as positive values for the 7’s appear in (31), it follows
that we must expect that in general not only such transitions will be pos-
sible in which all the n’s decrease, but that also transitions will be possible
for which some of the n’s increase while others decrease. This conclusion,
which is supported by observations on the fine structure of the hydrogen
lines as well as on the Stark effect, is contrary to the suggestion, put for-
ward by Sommerfeld with reference to the essential positive character of the
I’s, that every of the n’s must remain constant or decrease under a transi-

tion. Another direct consequence of the above considerations is obtained if
we consider a system for which, for all values of the constants aq,...as the

_ corresponding to a certain set 7V, ... 70, of values for the
7’s is equal to zero in the expressions for the displacements of the particles
in every direction. In this case we shall naturally expect that no transition
will be possible for which the relation nj, — nj = 7 is satisfied for every
k. In the case where Clo 1o, is equal to zero in the expressions for the
displacement to a certain direction only, we shall expect that all transitions,
for which nj, — ngr}g for every k, will be accompanied by a radiation which
is polarized in a plane perpendicular to this direction.

A simple illustration of the last considerations is afforded by the system
mentioned in the beginning of this section, and which consists of a particle
executing motions in three perpendicular directions which are independent
of each other. In this case all the fourier coefficients in the expressions for the
displacements in any direction will disappear if more than one of the 7’s are
different from zero. Consequently we must assume that only such transitions
are possible for which only one of the n’s varies at the same time, and that
the radiation corresponding to such a transition will be linearly polarized

in the direction of the displacement of the corresponding coordinate. In the

coefficient C7, . -

35




special case where the motions in the three directions are simply harmonic,
we shall moreover conclude that none of the n’s can vary by more than a
single unit, in analogy with the considerations in the former section about
a linear harmonic vibrator.

Another example which has more direct physical importance, since it
includes all the special applications of the quantum theory to spectral prob-
lems mentioned in the introduction, is formed by a conditionally periodic
system possessing an axis of symmetry. In all these applications a separation
of variables is obtained in a set of three coordinates ¢q1, g2 and g3, of which
the first two serve to fix the position of the particle in a plane through the
axis of the system, while the last is equal to the angular distance between
this plane and a fixed through the same axis. Due to the symmetry, the
expression for the total energy in Hamilton’s equations will not contain the
angular distance g3 but only the angular momentum ps round the axis. The
latter quantity will consequently remain constant during the motion, and
the vibrations of ¢; and g» will be exactly the same as in a conditionally
periodic system of two degrees of freedom only. If the position of the par-
ticle is described in a set of cylindrical coordinates z, 0,1, where z is the
displacement in the direction of the axis, g the distance of the particle from
this axis and ¥ is equal to the angular distance g3, we have therefore

z = Z Crim cos2m - {(T1 w1+ T2 w2) - t+Cry i}

and
0= Z 041,72 cos 2 - {(7’1 ‘wp T we) 0/71,72}7 (32)

where the summation is to be extended over all positive and negative entire
values of 7 and 79, and where w; and ws are the mean frequencies of oscil-
lation of the coordinates g; and ¢o. For the rate of variation of ¢ with the
time we have further

@, 0B .
dt =43 = ap3 — q1,92,P1,P2,P3) =

= iz 07,'/1,7—2 cos 27 {(Tl TW1t T2 w2) T+ 07/'/1,72}’

where the two signs correspond to a rotation of the particle in the direction
of increasing and decreasing g3 respectively, and are introduced to separate
the two types of symmetrical motions corresponding to these directions.
This gives

:|:’L9:27T-0J3't+2 C ., - cos 2m {(71-w1+72-w2)-t+cli,72}, (33)
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where the positive constant ws = Cf /27 is the mean frequency of rotation
round the axis of symmetry of the system. Considering now the displacement
of the particle in rectangular coordinates z,y and z, and taking as above
the axis of symmetry as z-axis, we get from (32) and (33) after a simple
contraction of terms

T = pcost = Z Dy ry-cos2m-{(T1 w1+ T2 -wo+w3) - t+drrn}

and

y=pcost = iz Dy ry-sin2m-{(m1 - w1 + 72 - wo +w3) -t +dryn}, (34)

where the D’s and d’s are new constants, and the summation is again to be
extended over all positive and negative values of 7 and 7o.

From (32) and (34) we see that the motion in the present case may be
considered as composed of a number of linear harmonic vibrations parallel
to the axis of symmetry and of frequencies equal to the absolute values of
(11 - w1 + T2 - wa), together with a number of circular harmonic motions
round this axis equal to the absolute values of (71 - wy; + 72 - wo + w3) and
possessing the same direction of rotation as that of the moving particle
or the opposite if the latter expression is positive or negative respectively.
According to ordinary electrodynamics the radiation from the system would
therefore consist of a number of components of frequency | 71 - w1 + 72 - wo |
polarised parallel to the axis of symmetry, and a number of components of
frequencies | 71 - w1 + T2 - we + w3 | and of circular polarisation round this
axis (when viewed in the direction of the axis). On the present theory we
shall consequently expect that in this case only kinds of transition between
the stationary states given by (22) will be possible. In both of these n;
and ny may vary by an arbitrary number of units, but in the first kind of
transition, which will give rise to a radiation polarised parallel to the axis of
the system, n3 will remain unchanged, while in the second kind of transition
ng will decrease or increase by one unit and the emitted radiation will be
circularly polarised round the axis in the same direction as or the opposite
of that of the rotation of the particle respectively.

In the next Part we shall see that these conclusions are supported in an
instructive manner by the experiments on the effects of electric and magnetic
field on the hydrogen spectrum. In connection with the discussion of the
general theory, however, it may be of interest to show that the formal anal-
ogy between the ordinary theory of radiation and the theory based on (1)
and (22), in case of systems possessing an axis of symmetry, can be traced
not only with respect to frequency relations but also by considerations of
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conservation of angular momentum. For a conditionally periodic system
possessing an axis of symmetry the angular momentum round this axis is,
with above choice of coordinates, according to (22) equal to I3/2m = nsh/2m.
If therefore, as assumed above for a transition corresponding to an emission
of linearly polarised light, ng is unaltered, it means that the angular mo-
mentum of the system remains unchanged, while if n3 alters by one unit, as
assumed for a transition corresponding to an emission of circularly polarised
light, the angular momentum will be altered by h/27. Now it is easily seen
that the ratio between this amount of angular momentum and the amount
of energy hv emitted during the transition is just equal to the ratio between
the amount of angular momentum and energy possessed by the radiation
which according to ordinary electrodynamics would be emitted by an elec-
tron rotating in a circular orbit in a central field of force. In fact, if «a is
the radius of the orbit, v the frequency of revolution and F' the force of
reaction due to the electromagnetic field of the radiation, the amount of
energy and of angular momentum round an axis through the centre of the
field perpendicular to the plane of the orbit, lost by the electron in unit of
time as a consequence of the radiation, would be equal to 2nvaF and oF
respectively. Due to the principles of conservation of energy and of angular
momentum holding in ordinary electrodynamics, we should therefore expect
that the ratio between the energy and the angular momentum of the emitted
radiation would be 271, 2° but this seen to be equal to the ratio between the
energy hv and the angular momentum h/27 lost by the system considered
above during a transition for which we have assumed that the radiation is
circularly polarised. This agreement would seem not only to support the
validity of the above considerations but also to offer a direct support, inde-
pendent of the equations (22), of the assumption that, for a atomic system
possessing an axis of symmetry, the total angular momentum round this axis
is equal to an entire multiple of h/27.

A further illustration of the above considerations of the relation between
the quantum theory and the ordinary theory of radiation is obtained if we
consider a conditionally periodic system subject to the influence of a small
perturbing field of force. Let us assume that the original system allows of
separation of variables in a certain set of coordinates q1,...qs, so that the
stationary states are determined by (22),. From the necessary stability of
the stationary states we must conclude that the perturbed system will pos-
sess a set of stationary states which only differ slightly from those of the
original system. In general, however, it will not be possible for the per-

25Comp. K. Schaposchnikow, Phys. Zeitschr. 15 (1914) 454.
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turbed system to obtain a separation of variables in any set of coordinates,
but if the perturbing force is sufficiently small the perturbed motion will
again be of conditionally periodic type and may be regarded as a superpo-
sition of a number of harmonic vibrations just as the original motion. The
displacements of the particles in the stationary states of the perturbed sys-
tem will therefore be given by an expression of the same type as (31) where
the fundamental frequencies wj, and the amplitudes C;, ., may differ from
those corresponding to the stationary states of the original system by small
quantities proportional to the intensity of the perturbing forces. If now for
the original motion the coefficients C, . ., corresponding to certain combi-
nations of the 7’s are equal to zero for all values of the constants aj, ... as,
these coefficients will therefore for the perturbed motion, in general, possess
small values proportional to the perturbing forces. From the above consid-
erations we shall therefore expect that, in addition to the main probabilities
of such transitions between stationary states which are possible for the orig-
inal system, there will for the perturbed system exist small probabilities of
new transitions corresponding to the above mentioned combinations of the
7’s. Consequently we shall expect that the effect of the perturbing field on
the spectrum of the system will consist partly in a small displacement of the
original lines, partly in the appearance of new lines of small intensity.

A simple example of this afforded by a system consisting of a particle
moving in a plane and executing harmonic vibrations in two perpendicu-
lar directions with frequencies w; and wy. If the system is undisturbed all
coefficients C;, . -, will be zero, except C1 and Cp 1. When, however, the
system is perturbed, for instance by an arbitrary small central force, there
will in the Fourier expressions for the displacements of the particle, in ad-
dition to the main terms corresponding to the fundamental frequencies w;
and we, appear a number of small terms corresponding to frequencies given
by Tiwi + Tewe where 71 and 7 are entire numbers which may be positive
as well as negative. On the present theory we shall therefore expect that in
the presence of the perturbing force there will appear small probabilities for
new transitions which will give rise to radiations analogous to the socalled
harmonics and combination tones in acoustics, just as it should be expected
on the ordinary theory of radiation where a direct connection between the
emitted radiation and the motion of the system is assumed. Another exam-
ple of more direct physical application is afforded by the effect of an external
homogeneous electric field in producing new spectral lines. In this case the
potential of the perturbing force is a linear function of the coordinates of
the particles and, whatever is the nature of the original system, it follows
directly from the general theory of perturbations that the frequency of any
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additional term in the expression for the perturbed motion, which is of the
same order of magnitude as the external force, must correspond to the sum
or difference of two frequencies of the harmonic vibrations into which the
original motion can be resolved. With applications of these considerations
we will meet in Part II in connection with the discussion of Sommerfeld’s
theory of the fine structure of the hydrogen lines and in Part III in connec-
tion with the problem of the appearance of new series in the spectra of other
elements under the influence of intense external electric field.

As mentioned we cannot without more detailed theory of the mechanism
of transition between stationary states obtain quantitative information as
regards the general question of the intensities of the different lines of the
spectrum of a conditionally periodic system given by (26), except in the
limit where the n’s are large numbers, or in such special cases where for
all values of the constants aji,...a, certain coefficient C;, ., in (31) are

S

equal to zero. From considerations of analogy, however, we must expect
that it will be possible also in the general case to obtain an estimate of the
intensities of the different lines in the spectrum by comparing the intensity
of a given line, corresponding to a transition between two stationary states
characterised by the numbers nf,...n} and nf,...n” respectively, with the
intensities of the radiations of frequencies wy - (nf —nY)+...+ws-(n,,—n’) to
be expected on ordinary electrodynamics from the motions in these states;

although of course this estimate becomes more uncertain the smaller the
values for the n’s are. as it will be seen from the applications mentioned in
the following Parts this is supposed in a general way by comparison with
the observations.




