SQL Summary – Version 10 for Ms Access. Numbered for ease of reference. Grade 10 and 11
	Structure of the language
	SQL operators

	SELECT <field(s)>
FROM <table(s)>
WHERE condition(s)
ORDER BY expression
		Arithmetic
Comparison
Logical
Concatenation
Special
	+ - * / MOD ^
< <= > >= = (equal) <> (not equal)
AND, OR, NOT
& (joining text)
Is NULL or is NOT NULL, LIKE,
BETWEEN val1 and Val2, IN (, , ,)

SELECT ALL fields using the wildcard
1 SELECT * FROM tablename . . . “ * “ wildcard selects everything – all fields.
“SELECT” and “FROM” are the only compulsory keywords
SELECT. What you are looking for — fields, the answer to a calculation, a random number, the date, the time
2 SELECT field1, field2, field3 FROM tablename . . . the separator is the comma
3 SELECT field, (Math + Science), date(), now() – dateOfTest, FROM tblLearnerTests

ORDER BY – ASC or DESC. ASC is default – smallest first, largest last. A first, Z last.
4 SELECT * FROM tblName ORDER BY LastName
5 SELECT * FROM tblName ORDER BY price DESC . . . the highest price is first
6 SELECT * FROM tblInventory ORDER BY price, make . . . cheapest to most expensive in alphabetical order by make
7 SELECT * FROM tblLearners ORDER BY dateOfBirth . . . the “bigger” the date, the younger the person is
8 SELECT * FROM tblInvoices ORDER BY ((Now()-invoicedate)/365.25)
LIKE – When you are searching for something . . . but you only have an idea, or a pattern. You only use LIKE with the wildcard
9 SELECT * FROM tblName WHERE lastName LIKE “W*” . . . starts with a “W”
10 SELECT * FROM tblName WHERE lastName LIKE “*van*” has “van” in the middle
Do not use LIKE when you know exactly what you are looking for.
THE BEST . . . THE 5 BEST . . . THE WORST . . . THE HIGHEST . . . THE MOST (EXPENSIVE) (CHEAPEST) . . . EARLIEST . . . LATEST
11 SELECT TOP 1 * FROM tblName ORDER BY ASC / SELECT TOP 5 * FROM ORDER BY DESC.
12 SELECT TOP 20 * FROM tblPrintLogs ORDER BY TotalColourPages DESC
13 SELECT TOP 1 surname FROM tblPrintLogs ORDER BY HOUR(date) DESC
14 SELECT TOP 1 lastName, firstName FROM tblPrintLogs WHERE email LIKE “*student*” ORDER BY cost DESC
SELECT ONLY CERTAIN FIELDS AND THEN SORT BY A SPECIFIC FIELD
15 SELECT field1, field2, field3, fieldN FROM tblName ORDER BY Age

SELECT VALUES THAT ARE UNIQUE
16 SELECT DISTINCT fields FROM tblName ORDER BY e.g. SELECT DISTINCT LastName FROM tblStudents
PERFORM ARITHMETIC ON THE SELECTED FIELDS AND THEN NAME THIS “NEW” FIELD (called an Alias)
17 SELECT fields calculation FROM ORDER BY e.g. SELECT Name, (Math + Science + IT) AS [Total marks] FROM tblStudents
USE ARITHMETIC FUNCTION TO FORMAT A RESULT e.g. rounding to 1 decimal place
18 SELECT fields arithmetic function(calculation)e.g. SELECT Name ROUND((Math + IT) /2, 1) AS [Average Mark] FROM tblStudents
19 SELECT fields calculations (MOD) AS alias e.g. SELECT totalPages MOD 4 AS [Total
STRING MANIPULATION TO EXTRACT A PORTION OF A LONGER STRING e.g. finding a person’s initial
20 SELECT string manipulation (field) & field & field e.g. SELECT LEFT(firstName,1)
EXTRACT A PORTION OF A DATE - YEAR, MONTH, DAY FROM A FIELD THAT HAS THE DATA TYPE OF “Date”
21 SELECT date or time(field) . . . e.g. SELECT YEAR(DOB) SELECT MONTH(DOB)
PERFORMING AGGREGATE FUNCTIONS ON ALL THE VALUES IN A PARTICULAR FIELD; YEILDS A SINGLE VALUE.
Aggregate functions; MAX(), MIN(), AVG(), SUM(), COUNT()
22 SELECT aggregate function(field) . . . e.g. SELECT MIN(SizeKB) SELECT AVG(TotalPages) SELECT SUM(Cost)
NOTE: Aggregate functions only return a value – no other details.

WHERE - COMPARING VALUES IN A PARTICULAR FIELD TO A PARTICULAR CONDITION e.g. larger than 5
23 SELECT fields WHERE condition = < > <= >= <> e.g. SELECT surname FROM PrintLogs WHERE TotalPages > 5
25 SELECT Name FROM tblStudents WHERE Address1 IS NULL
26 SELECT * FROM tblName WHERE ModelNumber LIKE “XC-450??” – wildcard ? for a single character
DETERMINING AGE AND DISPLAYING AGE FROM DATE OF BIRTH
27 SELECT Name, YEAR(NOW ()) – YEAR(DOB) AS Age. This version is not accurate
28 SELECT name, ROUND(((NOW() - DOB)/365.25),1) AS [Age] FROM tblLearners. This version is accurate
COMPARING AGES TO A PARTICULAR CONDITION e.g. larger and equal to 30
29 SELECT fields FROM WHERE calculation condition . . . e.g. SELECT fields WHERE YEAR(NOW()) – YEAR(DOB) <= 30
COMPARING AGES TO MORE THAN ONE CONDITION e.g. larger than March but smaller than June
30 SELECT fields WHERE condition AND condition . . . e.g. SELECT fields WHERE MONTH(DOB) BETWEEN 3 AND 6.
DETERMINGING THE AVERAGE AGE FROM DATE OF BIRTH
31 SELECT Name, AVG(NOW()) – YEAR(DOB)) AS [Average Age]. Discouraged as the age may not be exact
32 SELECT Name, AVG(NOW() - DOB)/365.25)AS {Average Age]. This is accurate.
PERFORMING A SIMPLE CALCULATION ON FIELDS IN THE SAME RECORD
33 SELECT (TotalPages * Copies) SELECT (Maths + Science + IT)
SELECT(price * 1.05) . . . this increases the price by 5%

38 Arithmetic function: INT(), ROUND(). Formats the single parameter within the brackets. ROUND rounds up or down. INT does not round.
	ROUND(((Now()-invoicedate)/365.25),3) . . . this rounds to 3 decimal places. Take care with the round brackets.
RND(seed goes here) – Generating a random number
A) Using a random number seed within the brackets generates a number between zero and 1.
B) Then you need to multiple it by 10, 100 or 1000 to get a real value bigger than one.
C) Then you need to add one to avoid generating a zero.
D) Then you need INT to truncate the real to an inte.g.er e.g. 0.87678902 becomes 87.678902 becomes 88.678902 becomes 88
E.g. SELECT INT (RND(riderID) * 100 + 1) AS [Random number] FROM tblRiders. Here the “rider id” is used as the random number seed.
39 Random numbers: RND(Upper bound – Lower bound) + Lower bound. To generate numbers between interval e.g. between 32 and 78 – see below
SELECT RND((riderID) + (78 - 32) + 78) AS [Random number] FROM tblRiders
40 Comparison operators: < > >= <= <> (not equal to)
41 String manipulation: LEFT(x), RIGHT(x), MID(x, y), LEN(field), & - concatenation operator in Ms Access. NOTE: SQL counts from 1, not zero.
42 Date and time: DATE, TIME, NOW, YEAR, MONTH, DAY, TIME, HOUR, MINUTE.
NOW() yields the date and time from the PC. DATE() yields date from the PC. TIME() yields time from the PC.
Example: YEAR(dob) will yield the year on its own. MONTH(dob) will yield the month on its own
43 Aggregate functions: MAX(), MIN(), AVG(), SUM(), COUNT(). Considers the whole and returns a single result (value)
e.g. it adds all the values in a field when you SUM. Most useful when used in conjunction with GROUP BY
They do not return any details from a specific record. Example: If you need maximum and minimum values with details use
“TOP 1” in conjunction with “ORDER BY”.
COUNT does not count a record that has a NULL value in the specified field. The other aggregate functions ignore NULL values e.g. SUM
44 Compound conditions: NOT, AND, OR
	WHERE town = “Johannesburg” AND maritalstatus = 1 AND gender = 1
45 More conditions: BETWEEN . . AND, IN and NOT IN, LIKE, NULL
	SELECT * FROM tblDetails WHERE town IN (“Johannesburg”, “Pretoria”, “Midrand”)
	SELECT * FROM tblDetails WHERE town NOT IN (“Johannesburg”, “Pretoria”, “Midrand”)
	SELECT * FROM tblTournament WHERE score BETWEEN 100 AND 200
46 Quotes.
Regular quotes for string data (“ “ or ‘ ‘).
Hash symbols for date/time . #2019/05/23 9:33:00#.
Boolean – no quotes.
NOTE: SQLite does not use # # for dates but instead uses ‘ ‘

Queries that alter data in a table (insert records, delete records or edit existing records) (table structure is not altered)
INSERT . . . INTO VALUES
UPDATE SET
DELETE

47 INSERT – adds a new record to a table and populates all the fields (when autonumber is not the primary key)
INSERT INTO tablename VALUES (field1Data, field2Data, field2Data) – no field names.
NOTE: The VALUES, the order of the values, and the datatypes match the table structure exactly
48 INSERT - adds a new record, specified fields . . . (when autonumber is the primary key)
INSERT INTO tablename (fieldTitle1, fieldTitle2, fieldTitle3) VALUES (field1Data, field2Data, field2Data)
E.g. INSERT INTO tblname (name, DOB, gender, grade, boarder) VALUES (‘Lynn’, #02 Feb 2000#, ‘F’, 10, false)
49 UPDATE – all . . . (the whole table, and all its records are given a new value e.g. the school gets a new name – everybody is affected.
UPDATE tablename SET field1 = value1, field2 = value2, fieldN = valueN
50 UPDATE – updates a record that matches a condition
UPDATE tablename SET field1 = value1, field2 = value2, fieldN = valueN WHERE condition
E.g. UPDATE PrintLogs SET FirstName = “Henrietta” WHERE Surname = “Bates” AND FirstName = “Henry”.

51 DELETE – all . . . (Deletes all the records in the table and cannot be undone in Ms Access. The table structure is not affected)
DELETE * FROM tablename
52 DELETE – those that match a condition . . . (NOTE: This delete SQL command cannot be undone Ms Access)
DELETE FROM tablename WHERE fieldname = value
E.g. DELETE FROM tblStudents WHERE studentID = 38 (Use the primary key value, not the person’s name)

More examples – SELECT
60. SELECT *
61. SELECT name, re.g.ion
62. SELECT name, area/population . . . (area divided by population which gives the population density)
63. SELECT ROUND(area/population, 2) . . . as above rounded to 2 decimal places
64. SELECT LENGTH(name)
65. SELECT name, LEFT(name,1)
66. SELECT name FROM tblWorldStats WHERE population > (SELECT population FROM tblWorldStats WHERE name = “Russia”)
a. Note: A query within a query – the second SELECT must only return one value or the comparison operator cannot work.
67. SELECT INT(genderMale / totalEnrolement * 100) . . . Percentage of male students enrolled in a colle.g.e rounded down.
68. SELECT ROUND(genderMale / totalEnrolement * 100, 2) . . . Percentage of male students enrolled in a colle.g.e rounded to 2 decimal places
69. SELECT ROUND(RND(SizeKb) * 5,0) . . . whole random numbers from 1 to 5 inclusive.
70. SELECT LastName & “ “ & LEFT(firstName,1) AS LastNameInit . . . last name concatenated with initial.

More examples – WHERE
71. WHERE area = 1000000
72. WHERE country = ‘Germany’
73. WHERE country IN (‘United Kingdom’, ‘Europe’, ‘Asia’)
74. WHERE MONTH(DOB) IN (1,2,3) . . . finds people born in the first quarter of the year
75. WHERE name LIKE “Al*”
76. WHERE name LIKE “Al*” OR “El*”
77. WHERE length(name) > 10 AND region = “Europe”
78. WHERE area < 500000 AND population > 1000000
79. WHERE area BETWEEN 1000000 AND 2000000
80. WHERE nationality = ‘England” AND goalsScored BETWEEN 40 AND 50
81. WHERE subject = ‘English’ AND YEAR(publication) BETWEEN 2000 AND 2015
82. WHERE LastName BETWEEN ‘A’ AND ‘M’
83. WHERE DOB BETWEEN #01/01/2010# AND #31/12/2010#
84. WHERE MONTH(DOB) = 12 AND DAY(DOB) = 25 finds people born on Christmas Day.
85. WHERE name NOT LIKE “ * * ” . . . space in the middle. Names made of two separate words would not be selected.
RESOURCE: www.sqlzoo.net - useful teach, example and quiz website. Note: Does not focus on Ms Access SQL implementation – small differences

NOTES
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__

1

