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Executive Summary

1 AMI is the combination of two technologies: digital meters that measure energy consumption and other data at a premise, as well as a two-way 
communication component to transmit meter data to the utility and to send utility signals to the meter. 

As electric utilities explore how best to serve expected, 
near-term demand growth from electric vehicle (EV) 
charging, the role of accurate information about their 
EV-driving customers has never been more important. 
This information helps planning teams identify potential 
complications, such as transformer overloading, and helps 
program managers develop strategies to turn challenges 
into opportunities, such as using EVs for load flexibility and 
virtual power plants. EVs are reaching the mainstream, 
with adoption predicted to grow by 16x through 2035, 
from 4.8 million EVs in 2023 to 78.5 million EVs in 2035. 
Utilities are expanding their capabilities to both track EV 
adoption and determine impacts for their load forecasts. 
Surveys and basic assumptions provide an adequate 
initial view, but robust datasets and rigorous analysis are 
becoming essential in many areas. This brief explores 
how utilities can use AI to get ahead of transportation 
electrification trends and prepare to implement 
managed charging programs. 

Artificial intelligence (AI) and machine learning (ML) can 
provide utilities with a more advanced understanding of EV 
impacts on the distribution grid and allow them to better 
plan for EV demand growth. These software solutions are 
helping early-adopting utilities accelerate their efforts in 
detecting EV-driving customers, create direct marketing 
and engagement strategies with those customers, and 
account for EV charging within broader distribution system 
management strategies. 

In 2024, the Smart Electric Power Alliance’s (SEPA’s) 
Transportation Electrification and Emerging Technology 
teams joined forces with Bidgely to capture the current 
status of AI for EV customer engagement. In this report, 
we explain how utilities are using a type of AI called deep 
learning to disaggregate advanced metering infrastructure 
(AMI) data into EV loads.1 Disaggregating AMI data into 
EV loads allows utilities to identify EV drivers more 
efficiently, design better-targeted EV managed charging 
programs, and map transportation electrification trends 
to distribution grid assets. This resource is intended to 
educate utility staff and their stakeholders with limited 
previous exposure to machine learning and other forms  
of AI. 

At its core, the benefit of using AI for EV detection is 
improved situational awareness, unlocking more efficient 
and effective EV load management. Three core benefits 
discussed in this brief and case studies include:

 n Easier to find and engage EV-driving customers: 
Utility staff can use AI analytics to find more EV-driving 
customers than self-report or basic analysis and can 
more efficiently target those with high potential to help 
meet load flexibility goals. Outcomes for utilities include 
more efficient customer analytics, customer outreach, 
program implementation, and more effective programs. 

 n Access to a novel source of EV charging data: Utilities 
with AMI can use AI analytics to identify EV charging 
sessions from hourly or 15-minute meter data. For 
some utilities, this will open a new door to EV detection 
analytics (e.g., those without a managed charging 
program or third-party access to EV telematics or EVSE 
data).

 n Higher-quality EV charging characteristics: By using 
more granular data like these, utilities can strengthen 
their understanding of (and better account for) local 
variability in how, when, and how much customers 
charge their EVs. As EV adoption rises and driving and 
charging patterns diversify, this granularity becomes 
crucial to pinpoint EV-grid integration challenges and 
devise programs, services, and grid upgrades that 
reflect this diversity and dynamism. 

AI tools make it easier to create value from data—
including finding trends in extremely large datasets 
and moving towards real-time analysis of device, 
customer, and utility data. Machine learning models 
are a subset of AI that have been used for decades 
to support well-defined utility tasks, such as load 
forecasting. Machine learning models have become 
more powerful and widely applicable due to grid 
digitization, yielding new data streams to analyze, 
computer science advancements, and broader access 
to cloud computing.

Why Now? 
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Figure 1 includes an overview of how using deep learning 
to analyze existing utility data like AMI interval data can 
help utilities accelerate and improve their grid visibility, 

customer engagement, and load shift implementation. 
These themes are elaborated on in the brief.

Figure 1. AI-Based EV Detection Enables Downstream EV Load Management

A: For more information about Software as a Service, see National Association of Regulatory Utility Commissioners (2020). Financial Toolbox Series: 
Cloud Computing Brief.
Source: SEPA (2024). 

https://tracking.cirrusinsight.com/6e7e4edb-a749-447a-83e2-fb8a1447f4b3/pubs-naruc-org-pub-0923a1ba-155d-0a36-3125-703210763f3c
https://tracking.cirrusinsight.com/6e7e4edb-a749-447a-83e2-fb8a1447f4b3/pubs-naruc-org-pub-0923a1ba-155d-0a36-3125-703210763f3c
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Introduction

2 Inclusive of battery electric vehicles and plug-in hybrid electric vehicles. Edison Electric Institute (2024). Electric Vehicle Sales and the Charging 
Infrastructure Required Through 2035.

3 Kevala Inc. (2023). Electrification Impacts Study Part 1: Bottom-up Load Forecasting and System-Level Electrification Impacts Cost Estimates. 
Prepared for the California Public Utilities Commission Proceeding R. 21-06-017.

4 National Renewable Energy Laboratory, Lawrence Berkeley National Laboratory, Kevala Inc., and U.S. Department of Energy (2024).  
Multi-State Transportation Electrification Impact Study: Preparing the Grid for Light-, Medium-, and Heavy-Duty Electric Vehicles.  
DOE/EE-2818, U.S. Department of Energy. 

5 The Smart Electric Power Alliance tracks the many ways to manage EV charging patterns to meet consumer needs while maximizing utility 
benefit. See, for example: Smart Electric Power Alliance (2024). The State of Managed Charging in 2024.

6 Smart Electric Power Alliance (2024). Expert Takeaways from the Early Days of AI.
7 For example: IBM (2024) Global AI Adoption Index 2023; CapGemeni Research Institute (2024) Harnessing the Value of Generative AI:  

Top Use Cases Across Industries.

As EVs reach the mainstream, adoption is predicted to 
grow from over 4.8 million EVs on U.S. roads today to 78.5 
million EVs in 2035, or more than 26% of the cars and 
light trucks on the road that year.2 Electricity load growth 
from new EV charging can also place new strain on the 
distribution system depending on the location and time 
of day. Studies forecast that unmanaged charging could 
cost billions of dollars in distribution grid infrastructure 
investments by 2035.3 Being proactive is key to managing 
these costs. EV TOU rates, active managed charging 
programs, and other interventions reduce and delay  
the need for such investments and their associated costs.4 
Luckily, consumers are often flexible about when and  
how they charge their vehicles.5 

This brief is about how utilities can use AI to get ahead 
of transportation electrification trends and prepare 
to implement managed charging programs. The utility 
industry is awash in many types of AI, from large language 
models to analyze regulatory documents to advanced 
wildfire detection and renewable energy optimization tools. 
For transportation electrification, machine learning tools 
exist to detect EVs and other sub-meter-level appliances 
from premise-level AMI data. This is a way to understand 
more of their customers, with greater nuance, than basic 
analyses or sample-based surveys. Machine learning also 

opens the door for dynamic automations that could help 
utilities better keep pace with rapid EV adoption. However, 
building trust among utilities, customers, and stakeholders 
about machine learning and other AI tools can be gained 
only through experience and the ability to validate results 
and understand value.6

This brief takes a closer look at where AI dovetails with 
transportation electrification, how AI-based EV detection 
and EV characterization with AMI data work, and how 
two utilities have been using machine learning insights to 
inform transportation electrification plans and programs. 
We present:

 n How AI works, using deep learning trained on AMI  
data as an example

 n Why there is an opportunity to expand the use of AI  
in transportation electrification planning

 n Utilities’ experiences using one form of AI to strengthen 
their EV initiatives

 n Considerations for utilities exploring AI tools for  
their work 

 n A glossary with the key terms at the intersection of  
AI and EVs

What is AI? A Machine Learning Focus
Utility staff are all on unique journeys to using AI. 
In 2024, multiple industry surveys suggested that about 
one-third of utilities were actively using generative AI 
somewhere in their operations,7 but utilities have been 
using other forms of AI—namely, machine learning 
models—for much longer. Before discussing AI for EVs 
specifically, this section provides a brief primer on AI for 
those who want to develop or refresh their understanding.

Artificial intelligence is all about computers solving difficult 
tasks through experience and observations. It is also an 
evolving field of study and practice with many branches.  
In 2024, most of the AI being discussed in the energy 
sector involved machine learning to improve pattern 
recognition and prediction. 

https://www.eei.org/-/media/Project/EEI/Documents/Issues-and-Policy/Electric-Transportation/EV-Forecast-Infrastructure-Report.pdf?la=en&hash=FF7F1A5913E3B48E8F92FA26E2AFB79FDBE0E89C
https://www.eei.org/-/media/Project/EEI/Documents/Issues-and-Policy/Electric-Transportation/EV-Forecast-Infrastructure-Report.pdf?la=en&hash=FF7F1A5913E3B48E8F92FA26E2AFB79FDBE0E89C
https://www.kevala.com/resources/electrification-impacts-study-part-1
https://www.energy.gov/policy/articles/new-multi-state-analysis-helps-guide-grid-planning-electric-vehicle-charging
https://sepapower.org/resource/state-of-managed-charging-in-2024/
https://sepapower.org/knowledge/expert-takeaways-from-the-early-days-of-ai/
https://newsroom.ibm.com/2024-02-26-New-IBM-Study-Data-Reveals-74-of-Energy-Utility-Companies-Surveyed-Embracing-AI
https://prod.ucwe.capgemini.com/wp-content/uploads/2023/07/Final-Web-Version-Report-Harnessing-the-Value-of-Gen-AI.1.pdf
https://prod.ucwe.capgemini.com/wp-content/uploads/2023/07/Final-Web-Version-Report-Harnessing-the-Value-of-Gen-AI.1.pdf
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 n How AI Works: AI is a system of input data (numbers, 
images, text, etc.), human instructions (programs) 
and outputs (predictions or estimations). Programs 
are designed to learn about and classify the data 
independently, and then apply learnings to make 
inferences about new data (Figure 2). Software 
developers design these models to work iteratively 
and with relatively little human involvement after the 
initial instruction. Therefore, resulting algorithms may 
reveal different patterns or predictions than a manual 
approach might find.

 n What Could AI Replace? Not all analyses need AI. AI 
is seen as a way to find patterns and make predictions 
faster, at a broader scale, and/or when the environment 
is highly complex or dynamic. For example, a 

midsize utility with 15-minute AMI data for its 50,000 
customers amasses 144 million data points per month. 
Conventional data science and statistical methods can 
reveal a great deal of insight on these data, but machine 
learning can help data scientists detect and model 
especially nuanced trends.

 n Why Now? Utility staff who perform load forecasting 
likely have some basic experience with AI, because 
machine learning—a subset of AI—underpins many 
of these models. Basic machine learning models have 
long supported a variety of other well-defined tasks. 
More recently, machine learning models have become 
more powerful and widely applicable due to the broad 
digitization of the grid, alongside computer science 
advancements and broader access to cloud computing. 

Figure 2. Deep Learning Identifies Patterns and Applies the Trends to New Data

Source: Bidgely. Reproduced by SEPA. 
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Framing the Utility Path to AI-Supported 
Transportation Electrification

8 Smart Electric Power Alliance (2023). 2023 Utility Transformation Profile.
9 U.S. Department of Energy (DOE) (2024). AI For Energy: Opportunities for a Modern Grid and Clean Energy Economy.

Three years ago, in 2022, 59% of U.S. electric utilities in 
SEPA’s network had already established a strategic plan 
for managing transportation electrification.8 Situational 
awareness has always been key to these types of plans. 
Analysis of customer surveys, public records (e.g., EV 
registrations), and AMI meter data all yield useful insight. 
AI tools can speed up these analyses and make it possible 
to incorporate more complex data.9 Utility staff have and 
are working through a variety of questions as they evaluate 

AI across their organizations, from digital readiness to 
use cases, to value. Figure 3 shows the questions that 
various teams might ask about AI tools specifically for 
transportation electrification. Because transportation 
electrification—and AI tools—are both dynamic topics 
today, the central question linking these perspectives is, 
“How can I begin preparing today for future opportunities 
and challenges?”

Figure 3. Early Questions to Answer in AI-Supported Transportation Electrification

Source: SEPA (2024). Research synthesis and industry interviews.

https://sepapower.org/utility-transformation-challenge/profile/
https://www.energy.gov/cet/articles/ai-energy


Insight Brief: AI for Transportation Electrification 9

Information managers within utilities can help 
transportation staff determine whether their organization 
supports AI and is ready to adopt it (Table 1). For example, 
AI is valuable for its ability to analyze vast digital data, but 
this capability requires the AI user or vendor to have both 
gathered the digital data itself and secured the computing 
power to store it and perform analyses. AI’s predictive 
elements introduce some new business and consumer 
risks, so data governance teams may need to be formed 
or strengthened to manage them.10 Finally, as customer-
centric businesses, it is important to be aware of the 
potential for negative perceptions of AI-based insights, and 
ensure that AI-based outputs are accurate. Utilities can 
leverage internal expertise or bring in external vendors to 
help manage these issues. 

Customer program staff at utilities can use AI to replace 
or supplement existing processes. Table 2 highlights a 
few ways that AI-based EV analytics work to replace or 

10 See NIST (2024) AI Risk Management Framework. The IEEE ‘Flexible Maturity Model for AI Governance Based on the NIST AI Risk 
Management Framework’ is designed to help entities assess their relative maturity on various dimensions of AI governance. TechBetter’s 
“Responsible AI Governance Framework” is based on the NIST AIRMF and denotes nine key risk categories, including performance, safety, 
privacy, security, third-party access and intellectual property, fairness, ecology, explainability, and transparency. 

supplement manual or digital approaches to early stages 
of managing transportation electrification. For example, 
to detect EVs, AI analytics would replace manual data 
gathering and conventional data analysis to identify 
usage spikes characteristic of EV charging. Layering AI 
analysis with automation tools further empowers utility 
staff to access current analysis results in real-time (e.g., 
dashboards that refresh when new AMI data are received).

As utilities progress from manual to digital and 
dynamic analytics, they may encounter new 
considerations. While detailed analyses of utility change 
management and digitalization are beyond the scope of 
this brief, four perspectives emerged in our research for 
this brief, which may help utilities envision their path to AI 
adoption to manage EV electricity demand growth.

 n Technology Roadmap: AI provides a path to get 
more insight from existing data, but requires linking 
hardware systems that generate the data with software 

Table 1. Digital Maturity Enables ML/AI Adoption

Enabling AI for Transportation Electrification Requires Investments in Digital Maturity 

Acquire Digital
Data on Physical 

Assets

Establish Data 
Management

Access Cloud
Computing

Invest in Software 
Capabilities (in-

house or third-party)

Update Data 
Governance to 

Include AI

Pilot AI, Validate 
Impact, and 
Implement

Source: SEPA (2024).

Table 2. AI is a Continuation of Transportation Electrification Digitization

Task
Manual

Hard copies, one-by-one 
approaches

Digital
Collect, store, transmit,  
and analyze digital data

Automatic and AI-Enabled
Software automations,  
AI analysis, and more

Detect 
EVs

 § Survey customers.
 § Process vehicle registration 

data.

 § Periodically query meter data for high 
energy use, using simple assumptions 
(e.g., what does EV load look like).

 § Obtain third-party networked EVSE  
or EV telematics data. 

 § Use machine learning to isolate EV 
charging loads from other large loads.

 § Automate staff analysis and reporting  
with live dashboards.

Engage EV 
Drivers

 § Open recruitment for 
managed charging programs.

 § Send mass-market outreach 
to all customers or to 
manually identified EV drivers.

 § Send outreach to EV customers  
after EV detection analysis.

 § Target outreach to customers with  
high load shift potential (identified  
with deep learning).

 § Run machine learning analysis to  
detect new EVs when AMI data refreshes.

 § Design automated email campaign to 
contact new EV drivers.A

 § Customize customer communications 
based on their behavior & devices.

A: Limited use today but possible to deploy; see discussion below on customer program operations.
Source: SEPA (2024). 

https://www.nist.gov/itl/ai-risk-management-framework
https://www.techbetter.ai/_files/ugd/f83391_86c83d3e7a72490a92dd27bb26d3ce40.pdf
https://www.techbetter.ai/_files/ugd/f83391_86c83d3e7a72490a92dd27bb26d3ce40.pdf
https://www.techbetter.ai/rai-maturity-model#:~:text=The%20TechBetter%20AI%20governance%20framework,governance%20standards%20in%20the%20world.
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systems to analyze it. A technology roadmap can 
help stakeholders understand what and when to 
expect these investments to return value and ensure 
that investments are fully leveraged for customer 
benefit. 11 Incorporating AI disaggregation tools in AMI 
technology plans increases the value of AMI data to EV 
rate design, programs, and services. In this process, 
it is important to bring together the varied people or 
teams that address individual pieces of transportation 
electrification and learn how they would like to make 
better use of AMI data, telematics, EVSE, or other data.

 n Risk Management: All AI tools are based on 
predictions and therefore have risks and limitations 
related to uncertainty. Before purchasing AI software, 
decision-makers and users should review the software’s 
reported technical performance in terms of metrics like 
accuracy, precision, and recall. If desired, they can also 
compare a sample of results to their own ground-truth 
data to check for common-sense alignment. Staff may 
also need to be trained on any utility governance best 

11 American Council for an Energy Efficient Economy (2020). Leveraging Advanced Metering Infrastructure To Save Energy.
12 See detailed discussion in SEPA (2024). State of Managed Charging in 2024.

practices for data sharing with third-party vendors and 
the ethics and best practices for using AI for customer-
facing services and communications. Interested utilities 
can engage AI ethics experts, AI software providers, 
consumer advocates, or community members to chart 
the path forward.

 n Customer Program Operations: As programs 
incorporate more complex EV charging management, 
they should maintain ease of customer use. SEPA’s 
report “Managed Charging Programs: Maximizing 
Customer Satisfaction and Grid Benefits” discusses 
how utilities can better design programs to increase 
customer participation and partner with software 
providers and other program entities to deploy those 
programs. While this brief focuses on the benefits of 
AI to utility program staff, the same tools can be used 
to present enhanced data insights to customers as 
well. AI vendors can provide utilities with strategies for 
presenting AI-derived insight to customers to inspire 
trust and position the utility as a partner. 

Improving EV Detection &  
Characterization with AI

Customers do not have to share their EV purchases or 
charging behavior with their utility. This type of data gap 
limits utilities’ ability to plan the distribution system most 
efficiently and implement EV load management programs. 
Finding another source of data regarding customer EV 
adoption, charging behavior, and the impact EV charging 
has on the distribution and bulk-level grids is, therefore, 
essential for planning for EV adoption. 

There are a variety of data sources and methods that 
utilities can choose from to fill in the gaps.12 

 n Public records, such as vehicle registration data, can 
in some cases be obtained to identify customers with 
registered EVs, but not where, when, or how they are 
being charged. Data lags may also limit how quickly 
action can be taken.

 n Networked EVSE and vehicle telematics data 
from vehicle manufacturers and charging equipment 
companies directly show where and how customers are 
charging EVs. As these are generally customer-owned 
and behind-the-meter assets, utilities must arrange 

third-party data-sharing agreements with vehicle OEMs 
and EVSE suppliers to obtain the data, such as in some 
managed charging programs.

 n Customer surveys are timely and relatively easy for 
the utility to implement, but as sample-based data, they 
cannot provide complete insight on all customers.

 n Utility meter data analytics include all customer 
accounts. Utilities with AMI meters installed have a 
relatively direct route to using the data to reveal EV 
adoption and charging. However, they must work 
through internal data-sharing processes and develop 
analytic methods and assumptions to reveal which AMI 
data indicate an EV present behind the meter. 

Each of these methods is an improvement compared 
to limited knowledge about customer EV adoption. Still, 
lower-coverage data and/or lower-certainty analyses 
may under-count the true number of EVs charging in a 
service territory. This cascades into reduced visibility into 
charging behavior, reduced ability to reach and engage 

https://www.aceee.org/sites/default/files/publications/researchreports/u2001.pdf
https://sepapower.org/resource/state-of-managed-charging-in-2024/
https://sepapower.org/resource/managed-charging-programs-maximizing-customer-satisfaction-and-grid-benefits/
https://sepapower.org/resource/managed-charging-programs-maximizing-customer-satisfaction-and-grid-benefits/
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eligible customers in EV managed charging, and increased 
uncertainty in EV load growth forecasts (Figure 4).

In the software market today, there are a variety of  
AI-based EV detection and charging characterization  
tools designed to better utilize the data listed above  
Figure 6, create higher-accuracy estimates at territory-
wide scales, and link these data to distribution system 

13 U.S. Energy Information Administration (2023). How many smart meters are installed in the United States, and who has them?
14 The Edison Foundation Institute for Electric Innovation (2023). Smart meters at a glance.

planning. The class of tools using AMI data for this 
purpose indirectly reveal EV charging through meter 
data disaggregation analyses. Meter data disaggregation 
analyses examine hourly or 15-minute consumption data 
for energy use signatures typical of EVs or other electricity 
loads. Finer-resolution data provide higher accuracy 
results. The following sections provide details  
and examples of this technique.

ML Solving the Difficult Task:  
Is There an EV Behind This Meter?

Advanced metering infrastructure (AMI) is an integrated 
system of ‘smart’ meters and two-way communication 
between customer and utility that records electricity usage 
(kWh) and automatically sends the data to the utility.
For residential meters, this information is often collected 
at hourly or 15-minute intervals. By 2022, utilities had 
deployed AMI meters at 73% of U.S. households and 

businesses;13 coverage continues to extend as utilities in 
some states begin their first deployments.14 

AMI meters are a useful source of information about 
customer energy usage. Utilities often query AMI data to 
find customers with high overall energy use, high peak 
demand, or who have started using more energy. Because 
utilities do not know what appliances or equipment 
customers own or how they use them, determining 

Source: SEPA (2024). Research synthesis and industry interviews.

Figure 4. EV Adoption Data Improves Efforts Across Key Steps of Vehicle-Grid Integration

https://www.eia.gov/tools/faqs/faq.php?id=108&t=
https://www.edisonfoundation.net/-/media/Files/IEI/publications/Smart-Meter-at-a-Glance-Update-2023.pdf
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the reason for these trends requires modeling and 
assumptions. For example, if interested in finding out 
whether EVs are charging at customer premises, analysts 
need a way to parse out EV usage from other high-usage 
electric appliances such as hot tubs, electric heat, or 
other equipment. EVs are a diverse appliance. A variety 
of simplifying assumptions can be made (Table 3), but 
as EV charging spreads and average customer behavior 
diversifies, there is growing interest in performing more 
sophisticated assessments.

For nearly 30 years, data scientists have been developing 
machine-learning tools to interpret electric meter 
data. With the increasing need to understand and 
manage transportation electrification, there is a 
new wave of using and improving on existing machine 
learning techniques to identify EV usage and charging 
characteristics. 

The approach has roots in the early utility AMI rollout in the 
2010s, when various companies and research institutions 
developed machine learning tools to parse meter-
level usage into the individual types of appliances and 
equipment that contribute to total usage.15,16 In the years 
since, software innovation has progressed, AMI coverage 
has increased, and AMI meters themselves have been 
improved to provide more data and better communication 
capabilities. 

15 Butner, R.S., Reid, D.J., Hoffman, M., Sullivan, G. and J. Blanchard (2013). Non-Intrusive Load Monitoring Assessment: Literature Review and 
Laboratory Protocol. Pacific Northwest National Laboratory.

16 Mayhorn, E.T., Sullivan, G. P., Petersen, J., Butner, R.S., and E. M. Johnson (2016). Load Disaggregation Technologies: Real World and Laboratory 
Performance. Proceedings of the 2016 ACEEE Summer Study on Energy Efficiency in Buildings.

AMI disaggregation with machine learning can be distilled 
into five core steps: 

1. Compile a large time-series dataset of AMI interval data

2. Classify energy usage patterns in the historical  
AMI data 

3. Associate unique patterns with end-use devices 
 (EVs, lighting, water heaters, etc.)

4. Predict which end uses are contributing to new meter 
data, based on past classifications and associations

5. Format results in ways meaningful to utility staff  
and customers

Today, a variety of software vendors provide end-use load 
disaggregation, including Bidgely, Uplight, Sense, Sagewell, 
Powerly, Oracle, and others. Each has developed unique 
algorithms and analytic approaches to disaggregating load, 
although in general the goal is to provide utilities and their 
customers about what appliances are present and when 
and how much energy they use (Figure 5). The Appendix 
contains a technical explanation of how these algorithms 
work and what utilities are doing with them, using Bidgely’s 
software as an example.

Table 3: Approach and Limitations of Simple EV Detection Methods

Amplitude Load Shape

Initial Simplifying 
Assumptions

High power draw over several hours could represent a 
charging session, such as when an owner comes home 
and plugs in their car. Relative amplitude differentiates 
EV charging from other loads.

Modelers tend to look for the most-classic EV load 
shape: a large load overnight (4kw to 8kW, for 6 to 8 
hours).

Limitation of the 
Basic Approach

Charging behaviors and EV battery depletion can vary 
widely; these characteristics result in varying power draw 
and charging durations. Using a standard estimation 
of demand across all EV owners may over- or under-
estimate grid impact.

Not all charging is equal. Plug-in hybrids have a different 
charging profile than BEVs, and Level 1 chargers have 
different load profiles than Level 2 chargers. These 
characteristics can impact EV visibility and the demand 
over time. EV detection with just one assumed load 
shape will miss some EV charging sessions.

Source: Bidgely and SEPA (2024).

https://www.pnnl.gov/main/publications/external/technical_reports/pnnl-22635.pdf
https://www.pnnl.gov/main/publications/external/technical_reports/pnnl-22635.pdf
https://www.aceee.org/files/proceedings/2016/data/papers/1_675.pdf
https://www.aceee.org/files/proceedings/2016/data/papers/1_675.pdf
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17 SEPA (2021). 2021 Utility Transformation Profile.

Utility Case Studies
As with AI adoption generally, utilities are at varying stages 
of using AMI data for EV detection. In recent decades, 
many utilities have used AMI data disaggregation results 
to engage customers about their energy usage and 
encourage energy-efficient behavior. For example, a 2020 
SEPA survey of 135 electric utilities found that 33% were 
using AMI data load disaggregation tools to determine 
or measure EV connections.17 EV and managed charging 
program managers who want to begin using these 
solutions can look to earlier adopters for learnings and 
best practices.

The following two case studies illustrate how utilities 
are using AI to disaggregate AMI data for EV detection, 
program design, and forecasting, thereby increasing utility 
situational awareness and load management capability.

 n Hydro One used EV detection with disaggregated AMI 
data to expand customer recruitment for an opt-in load 
shift program.

 n NV Energy used EV charging characterization with 
disaggregated AMI data to explore the need and value 
of EVMC and support a program trial.

Each case study discusses the context, application, and 
results of using AI software. Each also focuses on learnings 
about how various utility teams prepared to implement 
or expand their use of AI, whether finding new ways to 
apply AI insights for situational awareness, using them to 
refine customer engagement, or strengthening their grid 
planning to solve unique challenges posed by EV adoption 
(i.e., Figure 1). 

Source: Bidgely (2023). Empowering Utilities with True, Behind-the-Meter Disaggregation. Dotted line is whole-home energy consumption from 
AMI meter. Shaded areas reflect outputs of deep learning AMI data disaggregation. Recreated by SEPA.

Figure 5. Representative Customer Consumption by Behind-the-Meter Asset

https://s3.us-east-1.amazonaws.com/fonteva-customer-media/00Do0000000Yi66EAC/qzykRnca_2021_Utility_Transformation_Profile_1_pdf
https://www.bidgely.com/resources/behind-the-meter-disaggregation/
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Case Study: Hydro One Used AI to  
Identify EVs, Accelerate Recruitment,  

and Inform Planning18

18 Hydro One (2024) Investor Overview: Post Second Quarter 2024, Bidgely (n.d.) Hydro One Case Story: Gearing Up for the EV Revolution, and 
SEPA’s discussions with Hydro One and Bidgely staff (2024). 

19 Customers do not all charge their EVs at the same time. Diversity factors help utilities understand how much of the time an EV will be charging 
and, at a neighborhood level, what share of EVs are likely to charge at the same time and how their total load compares to system capacity. 
Knowing how many EVs are likely to charge at a given point in time helps utilities correctly plan the right size and location of new distribution 
system equipment. See also: Electrical Engineering Portal (2024). Energy Demand Factor, Diversity Factor, Utilization Factor, and Load Factor. 

Context
Hydro One distributes electricity to about 1.5 million 
residential and business customers in the Canadian 
province of Ontario. EV adoption has been modest to date 
but is now growing, particularly in areas already facing load 
growth from new construction. Hydro One had been using 
customer surveys to identify EV drivers.

Establish AI-Readiness
Hydro One already had the AMI data necessary to provide 
the inputs to Bidgely’s AI models. In 2019, Hydro One 
created a customer energy marketplace to engage its 
customers about energy, following the transfer of all 
Ontario utilities’ demand side management programs 
to IESO. Bidgely ran the new marketplace and provided 
customers with AMI data disaggregation insights based on 
Hydro One’s hourly AMI data. 

Gain Situational Awareness
Hydro One realized it could repurpose AMI disaggregation 
insights for its own staff to learn more about EV load, how 
that load was contributing to localized grid constraints, 
and the value and necessity of programs to manage EV 
loads that could defer or offset future grid investments. 
Hydro One turned to Bidgely’s disaggregation-based EV 
intelligence analytics to identify EVs across its service 
territory and understand their load impact.

 n Hydro One identified 20,000 customers with EV 
charging activity — approximately 10 times more than 
were identified via customer surveys. 

 n The utility has built confidence in these results via a field 
validation study. 

Engage Customers
Hydro One’s customer program team used the results 
to support outreach for a pilot EV demand response 
program. According to staff, targeted email recruitment 
sent to identified likely EV drivers resulted in the “highest 
click-through rate” in recent history. Three hundred 
customers signed up within 24 hours, and today over 
1,000 customers are enrolled. In Hydro One’s view, 
presenting customers with targeted offerings personalized 
to their energy consumption has been a success. 

Plan the Grid
Distribution system management staff now incorporate 
these meter-level EV insights into their work, creating 
territory-specific EV charging load shapes and diversity 
factors.

 n Staff use the software to estimate EV load, calculate 
average EV charging load shapes, and estimate a 
territory-specific EV diversity factor.19 

 n For the first time, by mapping results to grid assets, staff 
can assess EV adoption, incremental charging impacts 
(kWh and kW), and load profiles by feeder or substation. 
This added visibility supports design studies and can 
strengthen future system planning with territory-
specific insights.

about:blank
https://go.bidgely.com/rs/492-VKN-623/images/Hydro_One_Case_Study_EV_Intelligence.pdf?version=0
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Case Study: NV Energy Used AI  
to Facilitate Load Shift Trial  

for Diverse EV Charging20

20 Bidgely (2023). EV Preparedness Starts with EV Intelligence. NV Energy (n.d.) Electric Vehicle Rate; and SEPA’s discussions with NV Energy and 
Bidgely staff (2024). 

21 Nevada Power Company d/b/a NV Energy and Sierra Pacific Power Company d/b/a NV Energy. (2024). 2024 Joint Integrated Resources Plan. 
Distributed Resources Plan, Section 10. Transportation Electrification Plan. Accessed November 2024.

22 Including programs incorporating TOU, DR, and dynamic controls. See: Smart Electric Power Alliance (2024). The State of Managed Charging in 
2024. Table 6.

Context
NV Energy is an electricity generation, transmission, and 
distribution utility serving 1.4 million residential and 
commercial customers in Nevada, including Las Vegas. 
With growing EV adoption, NV Energy wanted to better 
understand customer preferences and charging trends. 
They also aimed to identify and test technology that 
could help improve NV Energy’s distribution and resource 
planning processes to prepare for future grid constraints 
that might develop because of additional EV load.

Establish AI Readiness
NV Energy has used AMI-based programs for customer 
engagement and energy efficiency purposes since 2017, 
and also offers an opt-in EV time of use rate. In 2023, 
Bidgely performed a trial AMI disaggregation analysis of 
100,000 NV Energy customers in the Las Vegas area to 
identify EV drivers, understand how often drivers charge 
on-peak and learn how their behavior contributes to 
overall electricity demand. Bidgely also supported a 
telematics-based EV managed charging trial with  
50 customers using peak-time demand response via 
informal telematics. 

Situational Awareness
The trial disaggregation helped NV Energy determine 
that “EVs are largely pocketed, and growth is likely going 
to be centered around hot spots where infrastructure 
investment will likely be needed first… EV behavior is 
not fully coincident with peak, but there is a substantial 
opportunity to shift load into off-peak hours.”21

Engage Customers
The goal of the managed charging trial was to explore what 
types of offerings would reach high-value candidates, meet 
customers’ needs, and provide system resilience as EV 
charging increases. Las Vegas is a “24/7” city, and customers 
need to charge their EVs at all times of the day and night. 
Accordingly, NV Energy also wanted to understand how best 
to help high-potential customers curtail charging during 
peak hours (8 pm-12 am) in balance with grid needs. For the 
trial, high-value customers were defined as those with high 
amplitude chargers (higher kW pull), charging frequently 
during the program event window (frequency of charging), 
and charging a lot during the event window (total KWh). 
Bidgely applied its AI models to NV Energy meter data to 
identify these types of customers.

Manage EV Charging
Typical managed charging programs achieve an average 
load shift of 0.2 - 0.8 kW/vehicle per event, accounting 
for the zero (0 kW) load shift from opt-outs and EVs not 
plugged in during events.22 This range reflects the variety 
of EV drivers enrolled in these programs and their plug-in 
habits (many customers plug-in every three days, often 
during non-peak times). In contrast, by using AI to detect 
50 customers with high-value baseline charging behavior, 
Bidgely was able to achieve a higher load-shift potential of 
2 - 4 kW/vehicle per event (Figure 6). By engaging only the 
highest-potential EV drivers, Bidgely’s approach achieved a 
2.5 times to 10 times greater load-shift on average. 

AI-powered analysis can increase EV customer program 
portfolio cost-effectiveness. Utilities benefit from targeting 
recruitment to customers who can respond to managed 
charging in ways most closely aligned with the program’s 
purpose, whether that is based on availability to reduce 
their charging by a specific amount, at a specific time or 

https://www.bidgely.com/resources/empowering-progress-ev-intelligence-resources/
https://www.nvenergy.com/account-services/energy-pricing-plans/electric-vehicle
https://www.nvenergy.com/publish/content/dam/nvenergy/brochures_arch/about-nvenergy/rates-regulatory/recent-regulatory-filings/irp/IRP-Volume-20.pdf
https://www.nvenergy.com/publish/content/dam/nvenergy/brochures_arch/about-nvenergy/rates-regulatory/recent-regulatory-filings/irp/IRP-Volume-20.pdf
https://sepapower.org/resource/state-of-managed-charging-in-2024/
https://sepapower.org/resource/state-of-managed-charging-in-2024/
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location, or other factors.23 This can reduce outreach costs, 
increase the load flexibility potential (kW/vehicle), and 
further increase the cost-effectiveness of EV time-of-use 
rates (Figure 7). For NV Energy, a targeted approach to 
managed charging yielded cost efficiencies for the utility and 
customers. Seeing that they could achieve load-shift goals 
with fewer, higher-potential customers than anticipated, NV 
Energy reallocated its incentive funds to provide each of the 
targeted participants with a higher participation incentive.

23 See additional examples in: Smart Electric Power Alliance (2023). Managed Charging Programs: Maximizing Customer Satisfaction and Grid 
Benefits. 

24 Nevada Power Company d/b/a NV Energy and Sierra Pacific Power Company d/b/a NV Energy (2024). 2024 Joint Integrated Resources Plan. 
Distributed Resources Plan, Section 10. Transportation Electrification Plan. Accessed November 2024.

Plan the Grid
NV Energy used learnings generated in these trials to help 
design its 2025 - 2027 Transportation Electrification Plan, 
filed with the Public Utilities Commission of Nevada as part 
of its integrated resources plan.24 This included a request 
to expand the trial to a full pilot, allowing “for the nuances 
of the full territory to be studied; [allowing] a wider array 
of customers to participate; and [focusing] on enrolling 
customers who have the biggest system impact.” 

Figure 6. EV Load Profiles of High-Value Drivers Before and After AI-Targeted Load Shift 

Source: Bidgely (2024). The medium blue line (A) indicates the targeted EV load of customers in the top two quartiles of demand. In contrast,  
the average EV charging profile of other customers (B) has significantly less charging occurring during the peak time (1-9 p.m.). With targeting in place 
for a targeted sample of higher-demand customersat NV Energy, the result was an average of 1kW/car for over 20 events, far exceeding the industry 
average of 0.2-0.3 kW/car. Recreated by SEPA.

Figure 7. Bidgely Has Realized EV Customer Program Cost-effectiveness

Source: Bidgely (2024). Based on Bidgely’s analysis of solution performances and market-published program performance from other vendors.

https://sepapower.org/resource/managed-charging-programs-maximizing-customer-satisfaction-and-grid-benefits/
https://sepapower.org/resource/managed-charging-programs-maximizing-customer-satisfaction-and-grid-benefits/
https://www.nvenergy.com/publish/content/dam/nvenergy/brochures_arch/about-nvenergy/rates-regulatory/recent-regulatory-filings/irp/IRP-Volume-20.pdf
https://www.nvenergy.com/publish/content/dam/nvenergy/brochures_arch/about-nvenergy/rates-regulatory/recent-regulatory-filings/irp/IRP-Volume-20.pdf
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Summary & Future Directions
Incorporating transportation electrification trends into 
distribution system planning helps utilities best target 
investments and support customers in managing costs 
and providing flexibility. Utilities can use AI tools to gain 
situational awareness, engage customers, manage EV 
charging load, and plan the grid. 

Looking ahead, as utilities advance their distribution 
system planning capabilities for the two-way, digitalized, 
dynamic grid of the future, improved EV insight can inform 
utility decisions about a cascade of other investments. 
Utilities can deploy AI’s capabilities in classification, 
assessment, automation, prediction, and customer 
engagement to support staff in moving from strategic 
planning to system investments and operations.
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Appendix: More Detail—Using Machine 
Learning to Detect & Characterize EVs

25 Bidgely (2023). Bidgely EV Intelligence Technical Brief. 
26 Ibid.

Bidgely’s UtilityAI™ software provides one example of 
how machine learning analysis of AMI data can work. 
Elaborating on the same four steps discussed in the report 
above, Bidgely developed its model by taking the following 
actions:

 n Compile: To develop its models, Bidgley collected 
billions of high-resolution sub-second-level data on 
all major appliances. This high-resolution data was 
the foundation for creating diverse appliance profiles. 
Bidgely additionally gathered a historical time series 
of AMI interval data from a variety of electric utilities in 
North America, Europe, and Australia. Bidgely has refined 

methods to sanitize the data for reliable analysis because 
the raw data collected is not always clean or complete.

 n Classify: Bidgely developed supervised and 
unsupervised machine learning algorithms to classify 
AMI data points based on a range of factors (amplitude, 
total energy consumption, time of day, day of the 
week, season, and weather data).25 The results of this 
classification can be visualized in a heat map (Figure 8).26 

 n Associate: Bidgely used deep learning to group AMI 
data points that represent unique energy “signatures.” 
These unique appliance signatures provide deep 
insights into appliance penetration and usage. 

Figure 8. One Type of Deep Learning Dataset used for End Use Disaggregation 

Source: Bidgely (n.d.). Empowering Utilities with True, Behind-the-Meter Disaggregation. In the blue heat maps, the y-axis represents every day of 
a year while the x-axis represents every hour of a day. The “Input Data” heat map shows an entire year’s worth of meter data, while the “EV Output” 
heat map shows the EV charging sessions extracted by Bidgely’s algorithms, showing the time of charging, length of charging session, and demand 
amplitude (coloration). These insights are then extracted into an individual user profile for each EV owner.

https://www.bidgely.com/resources/ev-detection-technical-brief
https://www.bidgely.com/resources/behind-the-meter-disaggregation/
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Signatures are continuously refined with Bidgely’s 
extensive library of ground truth derived from plug-
level sensors, manually labeled data, EV telematics 
data, customer surveys, etc. According to Bidgely, 
battery EVs using level 2 and level 3 chargers have 
distinctive charging signatures. Bidgely’s algorithms can 
differentiate vehicles from other appliances and identify 
the type and capacity of EVs and the type of charger.

27 Bidgely (2023). Bidgely EV Intelligence Technical Brief. 

 n Predict: By applying these classifications to new interval 
data, Bidgely’s machine learning model has correctly 
identified the presence of Level 2 EV chargers with 
96(+/- 2)% to 98(+/- 1)% accuracy hourly and 15-minute 
data, respectively.27 Bidgely has also identified Level 1  
charger consumption with 85(+/- 3)% to 92(+-3)% 
accuracy across these same intervals. 

Applying Insights to Shift Load in the Real World
Software providers can present disaggregation results 
to end-users (utility staff or utility customers) in a variety 
of ways, such as through load shape charts (Figure 9), 
customer home or business energy usage reports, or 
distribution planning dashboards that aggregate the 
detected EV load to the transformer, substation, or other 
grid units for EV loading and other analyses (Figure 10). 

With this appliance-level, behind-the-meter visibility across 
the grid, utility grid planners can identify which loads need 
to be shifted based on appliance (e.g. EV charger), location, 
grid asset impact, or other filter criteria and then define 
targeted mitigation approaches and customer segments. 
Likewise, program managers can tailor load-shift pilots 

and programs to these customer segments and engage 
them with hyper-personalized messaging and incentives to 
participate. 

Bidgley has worked with multiple utilities to identify and 
target EV owners for time-of-use rate enrollment and 
managed charging initiatives, resulting in high levels of 
peak load shift for EV charging. This includes layering 
multiple EV load shift solutions together, including EV 
managed charging, EV time-of-use rates, and behavioral 
load shifting. Engaging with EV owners beyond enrollment, 
using continued coaching touch points, helps customers 
stick with the desired EV load-shift behaviors (Figure 11).

Figure 9. Appliance-Level 8760 Demand Curves

Source: Bidgely (2024). Bidgely demo portal. The top chart shows total consumption across appliance categories for all 8,760 hours of a year. The 
lower chart shows segmented EV load only, demonstrating an upward trend in EV charging demand in the later months of the sample year.

https://go.bidgely.com/rs/492-VKN-623/images/EV Detection Technical Brief.pdf
https://demo.bidgely.com/ev-intelligence/
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Figure 10. EV Demand Impact on Grid Assets

Source: Bidgely (2024). Bidgely demo portal. This example is from Bidgely’s EV and Grid analytics solution and shows transformer utilization, filtered 
for EV-owning customers only. Grid planners can also perform this analysis at the substation and feeder levels. 

Figure 11. Customer Engagement Increases the Effectiveness of Time-of-Use Rates

Source: Bidgely (2024). In working with one utility to drive EV time-of-use (TOU) rate adoption, Bidgely found that after onboarding customers into the 
rate, their EV peak-time charging decreased by 70%. Once they were on the rate, the ongoing coaching (signified by letters in the time series above) 
helped reduce EV peak-time charging by an additional 26%. Recreated by SEPA.

https://demo.bidgely.com/ev-intelligence/
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Glossary

28 U.S. Energy Information Administration (U.S. EIA) (2017). Nearly half of all U.S. electricity customers have smart meters.
29 U.S. EIA (2023). How many smart meters are installed in the United States, and who has them?
30 Deloitte Consulting (2022). Enabling the clean energy transition: Planning for next-generation advanced metering infrastructure and grid 

technologies. 
31 NARUC (2022). Regulator’s Financial Toolbox: Advanced Metering Infrastructure - Unlocking Resilience.
32 U.S. Department of Energy (n.d.) DOE Explains...Artificial Intelligence. Accessed: October 2024.
33 Executive Office of President Biden (2023). Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. Executive Order 

14110.
34 Merriam-Webster (n.d.). Neural network. In Merriam-Webster.com Dictionary. Accessed: October 2024.
35 Dotan, R. (2024). How Does Generative AI Work? TechBetter. Accessed: November 2024.
36 Bidgely (n.d.). Empowering Utilities With True, Behind-the-Meter Disaggregation: Bidgely’s Proven Approach And Real-World Impact. 

Accessed: October, 2024.
37 U.S. Department of Transportation. (n.d.). Electric Vehicle Charger Types and Speeds. 

Advanced Metering Infrastructure: AMI is the 
combination of two technologies: digital meters that 
measure energy consumption and other data (i.e., kilowatt 
hour (kWh); usually at 1-hour, 30-minute, or 15-minute 
intervals) and a two-way communication component to 
transmit meter data to the utility (usually daily or more 
often), and to send utility signals to the meter. Utility AMI 
deployment accelerated circa 2010; by 2022, 72% of 
electric meters were AMI.28,29 Recently, some utilities have 
started deploying second-generation AMI meters (“AMI 
2.0”), which include better on-board computer processors, 
more memory, and on-board software to improve data 
capture, communications, and analysis at the meter (also 
known as grid-edge computing).30 Utilities typically request 
regulatory approval to invest in AMI.31

Artificial Intelligence (AI): Computer systems 
that perform complex modeling in ways that mirror 
human cognition. AI systems are designed to perceive 
environments (real or virtual), to abstract perceptions and 
model trends in an automated way, and to use the models 
to make predictions, recommendations, or decisions.32,33 
Most AI available today involves an AI technique called 
machine learning: 

 n Machine Learning: AI models designed to find 
patterns in data, iteratively learn from both the inputs 
and outputs, and improve model performance through 
trial and error. Machine learning models differ from 
statistical analysis in terms of their ability to handle 
more data, to handle unlabeled data, and in how they 
are ‘trained’ through many layers of analysis to extract 
complex relationships. These layers are called neural 
networks because they work in a manner “suggestive of 
the connections between neurons in a human brain...”34 

 n The most complex machine learning algorithms are 
called ‘deep learning’ and use thousands of layers of 
these neural networks. Whether applied to numerical 
data, such as AMI data, or text, sound, and image data, 
such as generative AI, deep learning is effectively a tool 
for predicting complex trends and outcomes.35

Disaggregation: The process of breaking down meter-
level electricity consumption data on a device-by-
device or categorical basis to isolate what equipment 
or usage is contributing to the total consumption.36 
This is accomplished through deep learning analysis, 
sub-metering or sensors, population-level statistical 
assumptions, or a combination. In the deep learning 
approach, analysis of large meter-level datasets extracts 
and categorizes the unique energy use signatures 
of appliances and other behind-the-meter devices. 
Results can be used to identify equipment presence, 
characteristics, on/off state, time-stamped consumption 
(kWh/interval), demand (kW at peak) at specified 
confidence, and precision. Deep learning is typically more 
accurate than statistical approaches and much more 
scalable than sensor-based approaches and can be 
personalized to a cohort of one customer.

Electric Vehicle Supply Equipment (EVSE): Also known 
as an electric vehicle (EV) charger. The equipment that 
connects the AC electricity grid at a site to the EV. It can 
be Level 1 (typically 1 kW), Level 2 (typically 7 - 19 kW), or 
Direct Current Fast Chargers (DCFC) charging (typically  
>50 kW).37 

EV Telematics: EV telematics refers to the communication 
of data between the vehicle and a data center (or “cloud”), 
enabling a range of consumer functions like remotely 
locking or unlocking a car, pre-conditioning the car’s 
temperature, accessing emergency assistance, and for 

https://www.eia.gov/todayinenergy/detail.php?id=34012
https://www.eia.gov/tools/faqs/faq.php?id=108&t=
https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/next-gen-advanced-metering-infrastructure.html
https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/next-gen-advanced-metering-infrastructure.html
https://pubs.naruc.org/pub/4DE49EE6-1866-DAAC-99FB-B36D6E27919D
https://www.energy.gov/science/doe-explainsartificial-intelligence#:~:text=Artificial%20Intelligence%20(AI)%20simply%20means,humans%20and%20other%20natural%20organisms.
https://www.federalregister.gov/documents/2023/11/01/2023-24283/safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence
https://www.merriam-webster.com/dictionary/neural network
https://techbetter.substack.com/p/how-does-generative-ai-work
https://www.bidgely.com/resources/behind-the-meter-disaggregation/
https://www.transportation.gov/urban-e-mobility-toolkit/e-mobility-basics/charging-speeds


22 SEPA 

Insight Brief: AI for Transportation Electrification

location and navigation services. Telematics also can 
be used to send control commands to the vehicle from 
a utility or third-party aggregator for active managed 
charging and retrieving charging session data for program 
participation verification.

Managed Charging: Approaches that shift EV charging to 
reflect utility, customer, and grid priorities. See SEPA’s State 
of Managed Charging in 2024 for extensive discussion and 
outlook.38

 n Active Managed Charging: EV charging is controlled 
(e.g., temporarily throttled or paused entirely) by signals 
sent to a vehicle or charger at discrete events or on a 
continuous basis.

 n Passive Managed Charging: Also known as behavioral 
load control, relies on customer behavior to align 
charging patterns with grid needs. Price signals such as 
Time-of-Use rates are often used to influence behavior, 
but ultimately, the customer remains in control of the 
vehicle charging.

38 Smart Electric Power Alliance (2024). The State of Managed Charging in 2024.
39 California Energy Commission (n.d.). Vehicle-Grid Integration Program. Accessed: October, 2024.

Time-of-Use (TOU) Rates: A TOU electricity rate reflects 
the cost of electricity at different times of day. Generally, 
a customer on a TOU rate will pay higher rates during a 
block of time when electricity demand is at its peak and 
electricity is most expensive, and lower rates off-peak when 
these factors subside. 

Vehicle-Grid Integration: Vehicle-grid integration (VGI) 
refers to technologies, policies, and strategies for EV 
charging, which alter the time, power level, or location of 
the charging (or discharging) in a manner that benefits the 
grid while still meeting drivers’ mobility needs.39
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