

3-Part Course | 7 Hours

Live: July 19th, 20th, and 21st, 2022 from 2 - 4:20 PM Eastern

On-Demand: available August 4th

Outline:

Session 1: Making a Case for Distributed Energy Resources

- 1. Setting the context the dispatch curve (for both competitive markets andvertically integrated)
 - a. Concept of marginal costs, and characterization by resource
 - i. Dispatchable resources
 - ii. Variable renewable resources
 - iii. Energy Storage
- 2. Products in competitive markets what gets bought and sold
 - a. Energy Day Ahead and Real Time
 - i. How those markets work
 - b. Capacity/Resource Adequacy
 - i. i.A brief review of capacity markets
 - c. Ancillary Services
 - i. How priced
 - ii. Participants
 - d. Frequency Regulation
 - i. How priced
 - ii. Participants
- 3. The distribution grid current inefficiencies, reliability issues, and constraints
 - a. Issues relating to meeting peak demand (load factor)
 - b. Regulatory models, (e.g. NY REV, MA SMART)
 - c. Tension between bulk power systems and distribution companies and thegrowing need for coordination
- 4. The customer view
 - a. Customer cost management/flexibility, including management ofdemand charges and peak monthly fees
 - b. The ability to meet growing reliability and resilience considerations
- 5. The challenge of integrating intermittent renewable resources and decarbonizingthe grid
 - a. Production curve solar
 - b. Production curve wind
 - c. Cycling of conventional resources and associated costs and emissions
- 6. Initial distributed energy resources use cases
 - a. Brooklyn Queens Demand Management
 - b. Hawaii Water Heater Program
 - c. SunRun, Sonnen, Sunnova, and Swell Virtual Power Plant

Session 2: Identifying and Qualifying the Resources

- 1. The technologies
 - a. a. Commercial
 - i. HVAC controls
 - ii. On-site generation
 - iii. Thermal storage (ice and other media)
 - iv. Batteries v. Smart EV chargers
 - v. Bi-directional EV chargers
 - b. Residential
 - i. Smart thermostats
 - ii. Controllable air conditioners i
 - iii. Water heaters
 - iv. Pool pumps
 - v. Smart EV chargers
 - vi. Bi-directional EV chargers
 - vii. Solar installations (& inverters)
 - viii. Batteries (& inverters) Water heaters
- 2. Qualifying the resources
 - a. The example of pool pumps in California
- 3. Aggregation
 - a. Communication and coordination among various assets from multiple vendors
 - b. Remote monitoring and state of readiness
 - c. Dispatch and portfolio management vendor control vs utility control
- 4. Cyber-security concerns
 - a. The risk of connecting IT to operational technology/SCADA lessons from the Ukraine and other warnings
 - b. The risk of large populations of distributed assets to the distribution and bulk power system
 - i. Sunspec Alliance
 - ii. California Rule 21 inverter focused approach

Session 3: Resource Planning and Optimization

- 1. Assigning value to DERS in the resource planning process
 - a. The increasing value of optionality in a rapidly evolving ecosystem
 - b. Determining desired levels and valuations across a time horizon
 - c. Understanding limitations and creating portfolio approaches
 - d. The need for thorough modeling
- 2. Best planning practices for incorporating renewables and DERS
 - a. Understanding potential and limitations
 - b. Costs and performance considerations
 - c. The necessity and challenge of communication and cooperation between grid operators and distribution companies
- 3. Effective program design
 - a. Motivating customer participation in DER programs
 - b. Effectively program design with pricing and technology
 - c. Evaluating appropriate technologies (and quantities) to achieve targeted outcomes
 - d. The critical need for timely, accurate, and granular market-based locational information

- 4. Policy and rate structures
 - a. The importance of the policy and regulatory landscape
 - b. Federal policy drivers (e.g., FERC 841 and 2222)
 - c. Tax incentives and other subsidies d. State and local policy drivers (RECs, RPS)
- 5. The increasing need for an evolving and secure grid architecture
 - a. The challenge of growing bi-direction flows/transactive power
 - b. Monitoring and power quality concerns