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Physical Computing
I’m such a huge fan of hands-on tactile computing experiences. 

There’s just so much satisfaction to be found in taking the 

ethereal code that lives inside your computer and expressing it 

in the physical realm. My first explorations into physical com-

puting in the classroom came through the Arduino, an open 

microcontroller platform released in 2005 that revolutionized 

teaching with hardware by making it accessible to novices. The 

ever-expanding family of Arduino-based devices covers lots of 

different feature sets and form factors, and over the last decade 

the affordability, accessibility, and capability of competing 

physical computing platforms have continued to bring down 

the barriers for teaching CS with hardware. 
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A decade ago I would recommend that novice CS teachers hold off on physical 
computing until they have a bit of classroom experience, but today I can, without 
reservation, recommend that even the greenest of CS teachers give hardware a 
spin. Moreover, artists are increasingly leveraging these accessible physical com-
puting platforms in conjunction with traditional arts in amazingly innovative and 
expressive ways. Take for example Miral Kotb, the creator of iLuminate, who com-
bines theater, dance, and CS with programmed light-up costumes that blend the 
human and the programmed elements of performance (see figure 6.1).

Figure 6.1 iLuminate costumes with programmed lights.

iLuminate was featured on the sixth season of America’s Got Talent, and I highly 
recommend finding a video of their performance to share with students. Despite the 
impressive and polished performance, the basic elements of these suits are within 
reach for students to replicate and experiment with using affordable technology.
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Tool Exploration: Circuit Playground
Of the many physical computing platforms available today, I have to admit I’ve 
got a special spot in my heart for Adafruit’s Circuit Playground. I worked closely 
with the folks there when developing the physical computing unit for Code.org’s 
CS Discoveries curriculum, which was designed around the unique capabilities of 
the Circuit Playground. I fell in love with this little board because it packed a ton of 
interesting input and output devices into a sewable, friendly form factor. Where my 
old Arduino lessons would require students to learn bread boarding and Ohm’s law 
as a prerequisite for even the most basic projects, the Circuit Playground opens up 
a wide range of engaging projects that don’t require a single extra wire.

Don’t get me wrong, I absolutely adore bread boarding and electronics, but when it 
comes to introductory CS I’m always looking for ways to bring students early wins 

without requiring a lot of new skills 
all at once, and the Circuit Playground 
definitely delivers in that respect. Run 
a scientific experiment by logging data 
from the temperature sensor over time. 
Use the light sensor to make a project 
that activates when its box is opened. 
Combine the accelerometer and buzzer 
to make a truly unique musical synthe-
sizer. Any one of these projects would 
require significant wiring with a tradi-
tional standalone microcontroller, but 
with the Circuit Playground not only 
can you create them without addi-
tional hardware, you can quickly switch 
between each of them making it much 
easier to share hardware among multiple 
students.

Circuit Playground Programming Model
Here’s where things start to veer from the way we were thinking about purely 
software-focused tools. The way you think about writing a program for the Circuit 
Playground depends on which programming language or environment you pair it 

Figure 6.2 Circuit Playground inputs 
and outputs.
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with. While most of the languages available give you pretty similar capabilities, the 
nuances between can make a big difference. To illustrate I’ll overview four program-
ming tools that cover a range of approaches and share pros and cons of using each.

Arduino (arduino.cc)
The Circuit Playground isn’t actually an Arduino because it is neither produced 
by the Arduino organization, nor does it use traditional Arduino form factors and 
processors. Despite that, the board is compatible with the Arduino IDE and pro-
gramming language, allowing you to leverage the abundance of resources and 
tutorials designed around the stalwart of consumer-focused open hardware. The 
Arduino programming model is very similar to Processing and p5, due to some 
shared lineage between the projects. Most notably you’ll find a similar setup/loop 
structure in Arduino programs, though the looping function is named loop() 
instead of draw(). In the same way that Processing was built on Java, the Arduino 
is programmed in a variant of C. This allows for one to write efficient and perfor-
mative code that squeezes the most of a puny processor, but it also means that you 
have to deal with the challenges of a language that wasn’t designed for beginners. 
Arduino sketches are compiled and uploaded to the board over USB, and once 
uploaded you need only provide power to the board to have it run your program. 
The folks at Adafruit have also published a nicely abstracted Arduino library that 
provides easy access to all of the sensors and outputs on the Circuit Playground. To 
write a program that blinks an LED every second could be written as follows:

int ledPin = 13; 
 
void setup() { 
  pinMode(ledPin, OUTPUT); 
} 
 
void loop() { 
  digitalWrite(ledPin, HIGH); 
  delay(1000); 
  digitalWrite(ledPin, LOW); 
  delay(1000); 
}
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Pros:

• Well established language with tons 
of existing resources, tutorials, and 
third-party libraries

• Compatible with lots of lots of differ-
ent microcontrollers

Cons:

• Not the most novice friendly 
language (C)

• Can be challenging to debug, partic-
ularly when you hit compiler errors

Circuit Python
Circuit Python (circuitpython.org) is a Python interpreter that has been opti-
mized to run right on your microcontroller. This means that once you have the 
Circuit Python interpreter installed, adding a program is as simple as mounting 
the board as a USB drive and dropping a text file with your script onto it. You don’t 
need any software other than a plain text editor, though a lightweight Python IDE 
like Mu editor (codewith.mu) will make your life much easier. The structure of 
Circuit Python programs is similar to Arduino sketches, except that instead of a 
named function for the loop you typically use an infinite while True loop. The same 
blinking LED program would look like this in Circuit Python:

import board 
import digitalio 
import time 
  
led = digitalio.DigitalInOut(board.D13) 
led.direction = digitalio.Direction.OUTPUT 
  
while True: 
    led.value = True 
    time.sleep(1) 
    led.value = False 
    time.sleep(1)

An additional benefit of the Python interpreter running directly on your board is 
that Circuit Python has a REPL, which stands for Read Evaluate Print Loop. This 
REPL is like a command line for your board. It’s a place where you can interactively 
run Python code without first writing it as a script. This is an incredibly useful 
feature for tinkering and debugging because you can try code snippets quickly and 
adjust as you go.
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Pros:

• Python is a fairly novice-friendly 
language

• REPL makes for easier tinkering 
and debugging

Cons:

• Relatively new and may have 
unexpected bugs

• Not a ton of existing resources 
and tutorials

MakeCode
The Circuit Playground MakeCode envi-
ronment (makecode.adafruit.com) is 
definitely the quickest and easiest way to get 
started, and despite the beginner friendly 
blocks it’s a fairly powerful programming 
tool. Similar to both Arduino and Circuit 
Python programming, MakeCode relies 
primarily on an infinite loop, here labeled 
“forever,” as the core program structure. 
MakeCode however has a few additional 
useful tricks, such as event handling for the 
inputs, some slick widgets for dealing with 
the colored LEDs, and best of all, a board simulator so you can test your program 
event without physical hardware available. Like Circuit Python, you install your 
programs onto the Circuit Playground by dragging a file onto a USB mounted drive. 
Our blinking LED program can been seen in figure 6.3.

Pros:

• Blocks-based language is easier 
for novices

• Board simulator allows multi-
ple students to share a single 
physical board

Cons:

• Blocks can feel constraining as 
students develop proficiency

• Only a handful of extension 
libraries available

Code.org Maker Toolkit
The final option is truly a horse of a different color. While each of the previous 
three environments operated pretty similarly by writing a program structured 
around an infinite loop and then loading it onto the board, the Maker Toolkit 

Figure 6.3 Makecode Code.
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(studio.code.org/maker/setup) is designed to control the Circuit Playground 
from a web app written in a tool called App Lab. The idea behind this approach is to 
model how hardware interacts with user facing apps without requiring complicated 
network setup, other wireless communication, or multiple programming languages. 
All of the code is written in JavaScript, running in your computer’s browser, sending 
messages to the Circuit Playground over USB. The Circuit Playground needs to have 
a special program called Firmata installed so that it knows how to react to messages 
from App Lab. There’s no infinite loop in this model, and most programming is event 
driven—for example, if you click a button in App Lab, a light activates on the board. 
Here’s what a blinking LED program looks in App Lab with the Maker Toolkit:

led.blink(1000);

Okay, that’s not a super fair comparison given that some of the other environments 
also include helper functions that can do simple blinks as well, but App Lab really 
isn’t operating under the same model, so maybe it’s worth stretching the example a 
bit. Take a look at figure 6.4.

Figure 6.4 Maker Toolkit screenshot.
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Instead of blinking at a set rate, this program uses two on-screen buttons to turn 
the light on and off. With the on-screen app as a new source for both input and 
output, the Maker Toolkit allows for quickly adding features beyond the built-in 
hardware. The board has to stay plugged into the computer for this model to work, 
since it’s communicating with the web app live over USB. You are effectively trad-
ing physical flexibility (and mobility) for a great deal of software flexibility. Think 
of it less like writing a program that runs on the board, and more like writing an 
app that can send commands to, and receive data from, the board. It’s not the ideal 
setup for every physical computing project (particularly those that require signifi-
cant mobility), but it’s a really fantastic way to model the real-life interplay between 
software and hardware.

Pros:

• Allows students to create user inter-
faces for physical devices

• Easy transition to hardware if 
you’re already using App Lab (used 
in Code.org CS Discoveries and CS 
Principles)

Cons:

• Board must be tethered to your 
computer while running

• You can only communicate with 
the board using a specific set of 
commands, limiting some uses

Classroom Considerations
Of the programming tools we just walked through, only the Maker Toolkit has a 
classroom focused environment with student account management and a dash-
board to track progress. However, now that we’re dealing with physical devices 
there’s a whole new tangible realm of concerns to wrestle with. The best organiza-
tional approach for you will depend heavily on your classroom layout and whether 
devices will be shared between students and sections, but I have a handful of guide-
lines that I’ve found useful in just about every case:

1. Track the chain of ownership: If you’re using laptops you may already use 
some manner of check-in/check-out system—use it for physical computing as 
well. This isn’t just about making sure stuff doesn’t go missing; it’s also really 
useful for debugging when a specific device may show a pattern of behavior 
across multiple students.

2. Standardize the set: It may go without saying, but the more you can unify 
what a hardware kit contains the happier you’ll be in the long run. If you have 
the funds to get a pre-packaged kit then that’s a great starting point, but if 
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you’re building up your own kits try to keep it simple and consistent. You can 
always add on later after you’ve got some experience.

3. Keep it all together: Tupperware containers, tackle boxes, lunch pails, remov-
able filing cabinet drawers—I’ve seen it all. Get creative and find something 
that fits the amount of hardware you need (but not too tightly). If you’re only 
using single boards without any accessories, hanging calculator organizers can 
work too.

4. Maybe don’t keep it all together: If you spend much time doing physical 
computing projects with kids you’ll inevitably find yourself slowly amassing 
a variety of additional specialized parts like servos, conductive thread, and 
sensors. Consider defining a “core” set of materials that every kit contains and 
then separate add on kits for projects that need them. See the list of Extension 
Kit Ideas for example kits.

5. Make kids do the inventory: “The more bits in your box, the harder it is to know 
when you’re losing your bits” is a saying of mine. It happens all the time, you 
see a stray LED or button on the floor and have no idea where it may have come 
from, so it goes in the mystery drawer hoping its owner comes looking some-
time. Keep an inventory list in your sets and consistently have students confirm 
their inventory. It won’t end the mystery drawer, but it will definitely help curb 
the tide and ensure that it’s easier for wayward bits to find their way home.

Extension Kit Ideas
Wearables:

• Conductive and regular 
thread

• Coin cell batteries & 
holders

• Metal snaps  
(for switches/buttons)

• Velcro strips

• Fabric scraps

Movables:

• Servos

• H-bridges  
(motor controllers)

• Small motors

• Technics, Erector, K’Nex, or 
other building toys

Interactables:

• Switches and buttons

• Light and sound sensors

• Speakers and buzzers

• Resistors

• LEDs
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Lesson Sketches
The following sketches can be used with any of the programming tools I mentioned 
earlier. Because of this I’ve avoided including sample code but, as always, you can 
find additional resources on the website.

Invent an Instrument
This activity can pair really well with the 
activities in the Music chapter, either 
as an instrument to play alongside a 
programmed song or to perform with 
another student live coding. Either way, 
be ready for some glorious noise when 
taking this one on. 
 
 
 
 

Preparation

For this you’ll want as diverse a set of crafting materials as you can get your hands 
on. Anything you can imagine kids building an instrument around are fair game—
and in particular pay attention to conductive material that can be used with the 
touch sensors. At a minimum you should stock up on sturdy cardboard and tape, 
but also consider:

• Styrofoam packing material

• Plastic bottles and containers

• Tubes (old hoses, surgical tubing, etc.)

• All kinds of tape (including conductive copper tape)

If you’ve got the space in your classroom it never hurts to keep an ongoing col-
lection of potential maker materials—you never know what a student my make 
magic out of.
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Activity

Prime the pump for this activity by asking students to list out as many different 
musical instruments as possible, keeping a list that the class can refer back to later. 
In the likely case that your class list is heavily or exclusively comprised of the euro-
centric instruments that you’d commonly find in a school band, it’s useful to have a 
handful of instruments from a broader range of cultures to add to the mix, such as 
the mbira, erhu, or didgeridoo—you can find a slide deck with pictures of these and 
more on the website for this book. Once you’ve got a nice diverse set of instruments, 
ask the students to categorize the instruments by their interface—the way a user 
interacts with the instrument to make music. You’re likely to get categories like:

• Blowing

• Buzzing lips or reeds

• Pressing buttons or keys

• Plucking strings

• Bowing strings

• Fretting strings

With that list in place, pair students up with a Circuit Playground and ask them to 
brainstorm ways in which the inputs and sensors on the board could either mimic 
some of the instrument “interfaces” they already listed, or provide a whole new 
way to “play” an instrument. If students haven’t already been directly exposed to 
all of the sensors on the Circuit Playground, encourage them to open up Make Code 
and look through the “Input” category in the toolbox for ideas.

Once students have had a chance to think through in pairs and then share as a class 
the ways they could “play” a Circuit Playground instrument, it’s time to set them 
loose making their own. You can leave the scope of this totally open if you like, or 
specify that students must apply certain concepts that they’ve learned in class. 
Either way, I think it’s worth having them spend some time planning and mapping 
out just how their instrument is intended to be played before building and pro-
gramming. At a minimum this plan should include:

• How the instrument will be held

• How a note/sound will start and stop
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• How the pitch will be controlled

• How the volume will be controlled

• If/how other qualities of the sound will be controlled (e.g. timbre, echo, 
vibrato, etc.)

From there set the crowd loose and enjoy the noise. As the instruments take shape 
encourage students to swap, try to play each other’s instruments, and provide 
constructive feedback. If you’re truly brave get everyone to play their instruments 
together (and definitely share it with me online).

Concept Focus: Decomposition

By analyzing how a variety of musical instruments are played students get practice 
decomposing a single common element of a set of (potentially) complex systems. 
This type of decomposition is particularly useful when you’re looking for guidance 
and inspiration when programming in a new context.

Cardboard Automata
To be totally transparent, I hesitated 
to add this activity because it requires 
some additional hardware (either servos 
or motors), but the magic of movement 
is just too great not to share. The setup 
here is a little more involved, and while 
the software side of things is dead 
simple, the mechanical end can be a 
bit finicky. All that said, the end result 
is really fun and well worth the invest-
ment. If you don’t have servos or motors 

available but still want to give this a try you can make hand-cranked automata and 
still embed CT into the design and problem-solving aspects.
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Preparation

The automata design here makes use a of a cam and piston to move one (or more) 
rods. Using the above image for guidance, there are four different elements that 
you’ll need to source for the basic mechanism that you see in figure 6.5.

1. The cam and follower material. The cam and follower need to be strong 
enough to rub up against each other without bending, binding, or breaking. 
Stacked cardboard wrapped in tape or thick foam work well. If you have access 
to shop tools, then wood or plastic are great choices as well.

2. Axle and piston material. Thin wood dowels can be used both for the axle 
holding the cam to the frame and the piston that is pushed by the cam follower. 
I’ve had good luck with bamboo kabob skewers for this. If you’re going the 
hand-cranked route, these can be used for your crank handle as well.

3. Piston bushing. You want to reduce friction where the piston passes through 
the top of the frame with some sort of bushing. Plastic straws cut in half work 
great here.

4. Frame material. You need something to hold the whole thing together, like 
small cardboard boxes.

That gives you everything you’ll need to build the basic mechanism and structure, 
but the real fun of this project is designing the automaton itself—the thing that’s 
moving. Any general craft supplies that you have will be useful here.

In order to control your automata with a Circuit Playground, you’ll also need 
a motor or servo. The simplest way to do this is with a 360-degree microservo 
because they’re easy to mount on the build, can be controlled with fair accuracy, 
and have a lot of other potential applications. If you want to use cheap motors 
instead, be aware that may have to account for excess power draw by using a motor 
controller (such as the ones on the Circuit Playground Cricket extension board) and 
definitely need to slow the motor speed down using gear reduction or a belt and 
pulley system.

Activity

This first part of this activity is entirely unplugged—first building the structural 
components of the automaton and then the creative component of whatever will 
be moving. This can be done in pairs or groups of three, and you should budget 
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time for students to experiment, make 
mistakes, and revise. Avoid providing 
students with an overly prescriptive 
structure, as this activity is a rich oppor-
tunity for students to navigate through 
ambiguity and iteration as they take the 
broad description of how a cam fol-
lower automaton works and then figure 
out how to apply it with the resources 
available to them. Start just by sharing 
a few photos of videos of cam follower 
mechanisms, which you’ll find on the 
accompanying page for this activity on 
my website.

With the examples in mind, ask stu-
dents to describe the behavior of these 
devices in terms of an algorithm. You 
may need to clarify that we’re not 

looking for an algorithm that describes how to build an automaton, but rather the 
algorithm for how the automaton translates input (in terms of turning the crank) 
into output (the motion of the automaton itself). You should end up with some-
thing along the lines of:

• A hand motor turns the input crank

• The crank rotates the cam

• The cam transfers the rotational energy of the crank into vertical movement of 
the piston, based on the cam’s shape

• The piston pushes on part of the automaton (which may cause other parts to 
move in turn)

This discussion is an opportunity to highlight two important concepts for this les-
son. First, an algorithm can be expressed mechanically as well as in software. While 
students may have done activities describing physical activities algorithmically, it’s 
unlikely that they’ve really considered the ways in which physical objects might 
actually execute an algorithm, alone or in conjunction with software. Second, the 
shape of the cam is the key to creating interesting motion in these devices. Really 

Figure 6.5 A basic cam follower.
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encourage students to explore how various cam designs, or even mul-
tiple cams and pistons, can achieve different kinds of motion in their 
automata. You can also share this page of helpful tips from Cabaret 
Mechanical Theatre to get student thinking about the uses for various 
cam shapes: bit.ly/35dDdcn.

Provide students with ample time and space to build, test, and refine their autom-
ata before optionally adding in the Circuit Playground and servo to control the 
crank. The programming for this is quite simple—at a minimum, students need 
some way to start and stop the servo. This can be done with the buttons or switch, 
but encourage them to also think about the additional benefits the board gives 
them, both in terms of the inputs that control the servo (such as using the light or 
sound sensor) and also the movement of the servo itself. Do you want it to rotate in 
both directions? Or maybe not rotate all the way, but waver back and forth? Note 
that the shape of the cam may prevent it from rotating in one direction, so always 
test gently with your hand before testing with the servo.

When all is said and done, revisit the question of how to describe these mech-
anisms algorithmically, but now more specifically related to each groups’ 
automaton. If you integrated the Circuit Playground make sure that students 
include both the software and hardware components of their algorithms.

Concept Focus: Algorithm Design

This activity introduces students to algorithms that span past the bounds of soft-
ware, which is a key understanding in physical computing and engineering more 
broadly. Many of the introductory activities in physical computing can feel like the 
physical component is just a smaller version of a computer—blinking lights instead 
of shapes on the screen, beeps instead of playing recorded audio. That’s not to say 
these experiences aren’t valuable, but when we can add actual physical motion into 
the mix we move into a space where how things are built has a real impact on what 
they can do. This is a great jumping-off point for students to explore different ways 
that motion can be transformed through gears, cogs, pulleys, and linkages and how 
those physical systems are expressions of algorithms.
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Alternatives
There are tons of physical computing boards out there, and it can be pretty difficult 
to peel apart the real differences. Instead of providing a comprehensive list I’m going 
to highlight a handful of boards that I like and which fit some different niches.

• Micro:bit (microbit.org) Developed by the BBC as part of on effort to bring 
CS to students in the UK, the Micro:bit does quite a bit at a very low price. It 
lacks some of the sensors that the Circuit Playground features, but its grid 
of red LEDs can be used to display text and simple animations, and it has a 
Bluetooth radio that can be used to write programs that communicate between 
multiple boards.

• Makey Makey (makeymakey.com) This board comes in at a higher price 
point than either the Circuit Playground or Micro:bit, but brings with it a much 
simpler (if less flexible) approach to working with hardware. Instead of pro-
gramming the board itself, the Makey Makey shows up on your computer as a 
keyboard, allowing you to use it in any programming environment where you 
could respond to key presses.

• Arduino Uno (arduino.cc) A veritable classic, compared to these other 
boards the Arduino Uno has little more than a processor and a lot of input/
output pins. The obvious downside is that you don’t have a lot of built-in things 
to play with, but the tradeoff is both a lot more flexibility to build those things 
yourself and a ton of tutorials on the internet to help you. This is a compelling 
route if you want to get into electronics and engineering, but less so if you plan 
on a briefer physical computing unit.

3D Printing
I can’t tell if the wave of 3D printing in schools has crested and is fading into the 
background, or if we’re just waiting for the right machine at the right price. The 
first 3D printer I had in my classroom was a MakerBot Replicator sometime around 
2012, and my experience using it with students was a constant rollercoaster. When 
it worked, it was like alchemy; students felt like they were spinning gold from flax 
(or more accurately key chains out of plastic) and the hum and buzz emanating 
from the back corner of my room felt like a factory for student creativity. When it 
didn’t work I was spending all of my free time getting the nozzle unclogged, level-
ing the build plate, or troubleshooting why half of my students’ designs wouldn’t 
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Artist Spotlight: Samer Dabra 
Samer Dabra is a London-based software engineer and artist who blends the 
digital and analog worlds with this robot drawn art.

You can see Samer’s latest creations on his website spongenuity.com.

The beauty of using CS to create art is that we are able to go beyond what is 
possible with just the human hand and eye to create something greater—and 
that originated in the human mind! I’ve always been someone who has both 
an aptitude for the technical side of things as well as the creative, once I was 
introduced to creative coding, I was excited to have an outlet for both and a 
way to express myself that is unique.

—SAMER DABRA

Figure 6.6 Computer science-infused artwork by Samer Dabra.
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slice. In these moments the gentle hum and buzz transformed into a gnawing and 
gnashing that picked away at the focus of everyone in the room. My students expe-
rienced some great successes and learned a lot—including printing and building 
more 3D printers from scratch—but to this day I’m not certain if the overall time 
investment was worthwhile.

That may be a bleak outlook, and certainly the reliability and stability of com-
mercial 3D printers has come a long way in the near decade since I first started 
teaching with them, but for an investment that can easily reach into multiple 
thousands of dollars (before even considering the consumable cost of plastic) it 
should give us pause. Whether you already have a 3D printer in the classroom or 
you’re looking to get one, there are some critical questions to reflect on first. I bring 
these up specifically in the context of 3D printing, but they’re useful reflections 
anytime you’re tempted to bring something new and shiny into your classroom (a 
temptation to which I have frequently fallen victim)—just replace every instance of 
“3D printing” with your shiny thing du jour.

• What am I trying to teach with this? Are you looking to teach the thing 
itself (if so, why?) or is there something important to your curriculum that 
3D printing is going to be exceptionally good at teaching? Is it bringing a more 
meaningful or relevant context for your students? If there’s a curriculum that 
comes along with it, look to see how much of the instructional time is spent 
on concepts you care about.

• How am I making room for this new thing? Is this replacing something in 
your curriculum because 3D design or printing is the only or best way to do it? 
If not, what are you cutting to make room for it? Be realistic about the amount 
of instructional time that you’ll need to provide a meaningful experience and 
the cost of what you’re cutting, particularly for underserved students.

• How will I ensure equitable access for my students? 3D printers have gotten 
faster, but they still aren’t really fast compared to producing something in 
software. Does your plan account not just for the long time it takes to print, 
but also the frequency of failure and need to reprint? If the solution is just that 
some kids will use it, the kids who are faster or ahead, then really reflect on 
how that impacts the rest of your students, not just in regards to their access to 
this learning but also how your own time and attention will be diverted from 
those that may need it more.
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The best way to bring 3D printing into a CS classroom in a way that aligns well 
with other concepts you’re teaching, reduces the time bottleneck, and ensures that 
every student has equitable access to limited hardware is to shift the focus from 
the printing of things and towards the designing of things that could be printed. 
It’s a slight nuance, but one that has helped me to focus and prioritize my time as 
a teacher; it’s okay to spend time that helps students to design things, less okay to 
spend that time making sure a given thing is printed. More importantly, it removes 
the physical device out of the equation in a way that lets you teach this even if your 
printer is broken, or you don’t have one in the first place. There are plenty of print-
on-demand services that could be used to print out student work and they don’t 
prevent students from making progress.

You probably think of a 3D model as something visual, something with shape and 
volume, but actually it’s actually all just code. Specifically, most 3D printers operate 
on something called G-code, which is a set of instructions that control the stepper 
motors (and other elements) on a 3D printer, CNC mill, laser cutter, or other com-
puter controlled manufacturing device. The G-code to print a single layer square 
outline might look like the following.

M109 S190     ; Heat the nozzle to 190 degrees C 
G28           ; Set all three axes (X,Y,Z) to their home position 
G1 X10 Y10    ; Move the nozzle to 10mm along both the x and y axes 
G1 X30 Y0  E3 ; Move 30mm along the x axis while extruding plastic 
G1 X0 Y30  E3 ; Move 30mm along the y axis while extruding plastic 
G1 X-30 Y0 E3 ; Move -30mm along the x axis while extruding plastic 
G1 X0 Y-30 E3 ; Move -30mm along the y axis while extruding plastic 
Z10           ; Move the nozzle out of the way, 10mm up the z axis

The first think you’re likely to notice about G-code, particularly in comparison to 
the other languages we’ve used, is that it’s very terse. This is not a language that 
many people ever write by hand, and it’s certainly not the code that students 
are going to use directly when create their designs. That doesn’t mean, however, 
that it doesn’t have a place in the classroom. Showing students the kind of code 
that actually runs on their printers can be a great place to talk about the layers of 
abstraction in computing. Every programming language sits somewhere in a spec-
trum from understandable by a human down to understandable by a computer 
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(see figure 6.7). Languages that we use 
in the classroom are optimized to be 
very human readable, so they have to 
be translated down to further layers of 
the software stack, which has a perfor-
mance cost. Getting programs to run 
faster often requires using languages 
that are closer to the hardware—the 
closest being binary machine language. 
We don’t need to program directly in 
G-code because we can use a program 
called a slicer to do the work of translat-
ing a 3D model to G-code.

Depending on your 3D printer software 
you may be able to view and edit the 
G-code before it goes to the printer, 
or use a live console to send individ-
ual G-code commands directly to the 
printer, as in figure 6.8.

Figure 6.8 G-code for a ‘benchy’ tugboat.

Figure 6.7 The spectrum of 
programming languages.
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Tool Exploration: OpenJSCAD
The most common way to create 3D models is using drag-and-drop modeling 
tools like AutoCAD, but that’s not the route we’ll be heading down. Instead, we’ll 
use a programming tool called OpenJSCAD to develop models with code. Before 
going any further, I feel like we need to peel apart the onion layers in that absolute 
mouthful of a name. Let’s start from the end and work our way backward. Here are 
a few definitions:

• CAD Computer Aided Design is the use of computers to aid in the design of 
things (clever, yeah?). Architects, engineers, and artists all use CAD software to 
create detailed and sophisticated designs, blueprints, and models. CAD soft-
ware like AutoCAD can be used to create models for 3D printing without any 
need for code, but where’s the fun in that?

• SCAD Solid Computer Aided Design. Like CAD, but solid. As in specifically 
designed for models that will be physically printed.

• OpenSCAD (openscad.org) An open source program designed for scripting 
the generation of 3D objects that runs on Windows, Mac, and Linux.

• OpenJSCAD (openjscad.org) Like OpenSCAD, but in JavaScript. 

So, why OpenJSCAD? In short, it runs in the browser and it uses a language that stu-
dents in my class have already seen (and which is used by many other tools in this 
book). Functionally OpenSCAD and OpenJSCAD are almost identical, so if you don’t 
want JavaScript you can stick with OpenSCAD. If you don’t want text at all then 
you can check out a BlocksCAD, a Blockly-based version of OpenSCAD available 
at blockscad3d.com.

A Quick Tour
There’s not much to the OpenJSCAD interface, so this will be the quickest of quick 
tours. See figure 6.9.

1. This 3D rending of your code can be panned, zoomed, and rotated to inspect all 
areas of a model. The arrow on the left edge of the screen pops out a reference 
panel with links to documentation.

2. The code area on the right is little more than a formatted text box, nothing fancy. 
To see changes to your code in the rendering area you can click Shift + Enter.
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Figure 6.9 The OpenJSCAD environment.

OpenJSCAD Programming Model
OpenJSCAD uses a programming paradigm that isn’t seen very often in K–12 CS 
called functional programming. In this paradigm we treat just about everything 
in a program as a purely mathematical function. Functions in this approach are 
considered first-class citizens, which basically means that they can be assigned to 
a variable, passed as an argument to another function, or returned from a function. 
In practice this means that we are frequently nesting lots of functions together, as 
one function may be taking another function as an input, which may in turn be 
taking another function as an input, and so on. It’s functions all the way down. This 
transition in thinking can be a bit difficult for some students, particularly when 
they’ve gotten used to thinking of programming as a sequence of commands (an 
imperative programming paradigm). It’s worth noting that although OpenJSCAD 
encourages a functional programming approach, you aren’t actually forced to use 
functional programming exclusively.

So how does this functional programming paradigm impact how we make things 
in OpenJSCAD? For one, your whole model rolls up into the return value of a single 
main() function, so in order to produce anything more complicated than a single 
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shape you have to nest functions that add and remove shapes from each other. Let’s 
walk through the example in figure 6.10.

Figure 6.10 A simple OpenJSCAD model.

Basic Principles of Functional Programming
In general you can think of functional programming as code that follows the 
rules of Algebra (or more properly lambda calculus, but algebra is a more 
accessible reference for most students). There are lots of times in program-
ming where we do things that look like math, but behave quite differently. In 
functional programming we want everything to behave the way a function in 
algebra class would function. This includes:

• Consistent Output. Every time you provide a given set of inputs to a func-
tion you get the same output. In other words, 1 + 1 is always 2.

• No Side Effects. The only thing a function can do is return a value based 
on its input, you can’t touch stuff outside of the function, such as changing 
a global variable.

• Variables are Immutable. Once you’ve given something a name, its value 
can never change. If I say x = 1 then I can’t later say x = x + 1.
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The first thing to notice is that everything is wrapped inside the main() function, 
so at the end of the day the only thing that will get put on screen is whatever value 
we return from that function. Now instead of working from the top of the return 
value, I think it’s a bit easier to work from the inside out.

• Lines 3 and 4 are the two shapes at play here, a 3 x 3 x 3 cube and a cylinder 
with radius 2 and height 3.

• Line 2 returns the output of the difference() function that the cube and cyl-
inder are being passed to. This function will remove the second shape from the 
first, giving us a quarter cylinder cutout.

• Line 5 calls the scale method of the shape that’s being returned to scale 
it up 5x.

It can take some time getting used to thinking in this nested functional manner, 
combining shapes by passing them through various translations and Boolean 
combinations. My advice is to avoid thinking sequentially from top to bottom and 
instead try to think from the inside out. The outermost function that represents 
your shape is the culmination of all of the functions that live inside it. Once you 
have the basic understanding of how elements are passed through to each other, 
we can start to talk about the different kinds of elements available. Broadly, they 
fall into two categories.

1. 3D Primitives: Basic 3D objects such as cubes, spheres, cylinders, tori, and text. 
These shapes are already fully three-dimensional.

2. Extruded 2D Primitives: These start as 2D paths like squares, circles, or any 
arbitrarily complex 2D path that is pulled through space to make a 3D object.

cube({size: 1}); // Creates a cube that is 1 x 1 x 1 
 
linear_extrude({height: 1}, square({size: 1})) // Creates a 1 x 1 
square and then extrudes it by 1 to create a 1 x 1 x 1 cube

Compare the two lines above, both of which produce a 1 x 1 x 1 cube. To extrude a 
square we call the function linear_extrude with a call to the function square as 
one of its arguments. This nesting is crucial to how you think about building up 
complex shapes using transformations and Boolean operations.
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Boolean Operations
You may have introduced Boolean values to your students as the dichotomy of true 
and false. Perhaps you’ve also used Boolean operators for something like checking 
if an age is greater than twelve and less than 19. The Boolean operations in 3D mod-
eling are a bit of a departure from the simple world of true/false that we’re used 
to in intro CS. In 3D modeling we use Boolean operations to describe how shapes 
should be combined. The three Boolean operations in OpenJSCAD are:

• Union (Boolean OR): Any area that is included in either one shape OR the other 
will be included in the combined shape.

• Intersection (Boolean AND): Any areas that are part of both the first AND sec-
ond shape are included in the combined shape.

• Difference (Boolean NOT): Any area that is part of the first shape but NOT part 
of the second will be included in the combined shape. Unlike the other two, 
order matters here so pay attention to which shape is listed first.

Using these three operations we can 
build up quite complex shapes from 
simple shapes. I find it really helps to 
speak the whole thing out to help inter-
nalize how they work. For example, for 
the operations in figure 6.11 I might say:

• The union of the circle and square 
includes any are that is part of the 
circle or the square.

• The intersection of the circle and the 
square includes only the area that is 
part of the circle and the square.

• The difference of the circle and the 
square includes the area that is part 
of the circle but not the square.

• The difference of the square and the 
circle includes the area that is part 
of the square but not the circle (note 
how the order changed).

Figure 6.11 Boolean operations.
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Transformations
Finally, there are a number of transformations that you can apply to shapes to 
further modify their location, rotation, and size. Transformations can be applied 
either in the functional model (as a function that you pass a shape into) or in an 
object-oriented fashion as a method attached to the end of your shape with dot 
notation. Let’s compare the two below.

// Make a cube and move it 1 along the x axiz, 2 along the y, and 3 
along the z 
translate([1, 2, 3], cube({size: 3})); 
 
// Do the same thing, but with a method 
cube({size: 3}).translate([1, 2, 3]);

Aside from translate, which moves a shape from its default location, there are 
functions to rotate, scale, and center your shapes.
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Lesson Sketches
The following sketches are a good way to have students experiment with Booleans 
and models that can be printed with a 3D printer.

Make a Container
Of the many dozens or even hundreds of 3D printed 
trinkets that students left on my desk, the ones 
that stuck around fell into two camps, the quirky 
and the useful. The quirky ones are hard to predict 
and widely varied, and they survived the trash can 
because honestly who is going to toss out a plastic 
model of their own head on a rubber duck body? The 
useful, on the other hand, survived the trash because 
they made themselves indispensable. As a collector 
of many things (quirky prints included), I often find 
myself in need of containers like boxes and vases. 
Not only do they give you (or your students) a good 
place to stash your goodies, they are a really simple 

introduction to the way in which basic shapes can be combined with Boolean oper-
ations to make more complicated objects.

Activity

This activity works best without a ton of guidance, just a broad goal and a lot of 
room for students to explore how best to reach that goal. Specifically, we want to 
create containers by removing the inside of a shape using the difference() func-
tion, for example you could remove the volume of a cylinder from a slightly larger 
cylinder to create a basic straight sided vase. That’s really all there is to it. Each stu-
dent can play with the different shapes and transformations to make boxes, cups, 
bowls, or any other container they can imagine.
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Concept Focus: Booleans

As I mentioned in the tool overview, the way that we approach the concept of 
Booleans in this context is richer and more nuanced than we may typically see in 
introductory CS. This activity specifically lends itself to a Boolean not to subtract 
the volume of one shape from another.

Evolving Shapes
Imagine a game of telephone, but 
instead of a verbal message getting 
mangled and morphed over time, it’s 
a model that gradually changes and 
evolves as it passes through more hands. 
That’s the basic idea here. This activity 
can really help students understand 
the nested nature of functional pro-
gramming as they gradually add to (or 
subtract from) their collective models. 
 
 
 
 

Activity

Place students into groups of three to four and ask each group to come up with a 
relatively simple model that they want to create. You want something that’s going 
to require multiple different shapes combined in interesting ways. I would tend 
towards something that feels a bit past your students’ reach rather than something 
that’s too simple because it’s just more fun that way. Reach for the stars; even if you 
miss, you’ll end up with an interesting-looking mangle of shapes.

Once every group has selected a goal model, they should spend five to ten minutes 
breaking down that shape into its component pieces, keeping OpenJSCAD’s prim-
itive shapes in mind. It’s a pretty safe bet that students will naturally tend towards 
thinking of things from a purely additive viewpoint—in other words, it’s likely that 
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they’ll focus on building up a shape out of building blocks and miss opportuni-
ties to use other Boolean operators like difference. Prompt them as necessary to 
encourage thinking past the “building block” model.

Is it Printable?
Designing a 3D model is one thing; ensuring that it can actually print effec-
tively is another. As students work on their evolution, encourage them to 
constantly question whether or not it will be printable. This inquiry becomes 
more natural and nuanced as students get more experience with 3D model-
ing and printing, but early on it can be as simple as making sure that there’s 
actually a bottom layer. An object that’s just floating in air won’t stick to the 
printer’s build plate!

The next step is to start actually building out the models, and this is where it gets 
fun. In the spirit of telephone, each group should define a sequential order they’ll 
work in. Each student gets to add only one additional function before passing 
the program to the next one. Building the models in this way is challenging, but 
encourages groups to think systematically about how to structure their programs.

Concept Focus: Decomposition

The key to building a moderately complex model from basic shapes is breaking 
down that shape at the start. It’s tempting for students to jump right into a problem 
without spending the time up front on decomposition, which is exactly why this 
activity is structured to push that decomposition to the forefront.
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Alternatives
• BlocksCAD (blockscad3d.com) This Blockly-based implementation of 

OpenSCAD can be used as a drop in replacement for any of these activities 
and comes with the added benefit of removing syntax from the equation for 
students who need that additional scaffold.

• Tinkercad Codeblocks (tinkercad.com/learn/codeblocks) Tinkercad is an 
easy to use interface for building 3D models from a drag and drop GUI, and the 
Codeblocks extension brings programming to the platform as well.

• Rhino Grasshopper (rhino3d.com) Rhino is a professional quality CAD tool 
that could be used for a much more advanced 3D design course. Grasshopper is 
an integrated programming tool that allows you to build sophisticated scripts 
that allow for advanced and detailed 3D models.


