Guided Lesson Notes

Name	Date.						
Simple N	Machines						
notes, you are more likely to remember wha guide can be used for practice activities and	Directions: Complete this study guide as you move through the lesson. By taking notes, you are more likely to remember what you are learning. The completed study guide can be used for practice activities and to prepare for quizzes and exams. Be sure o save each study guide so you can access it when you need it.						
Essential Vocabulary							
As you encounter these scientific terms i example (or two) for each. You can even unfamiliar words you find, enter them in	draw a picture. If there are other						
efficiency	wheel and axle						
pulley	inclined plane						
simple machine	compound machine						

screw	level
mechanical advantage	wedge
classes of lever	work output
work input	

Machine

1.	Fill	in	the	blan	ks a	about	machines
				DIGIL	1.3 (ubout	HIUGHIIIG

A	is any device that only	requires the application of
a	They help you do	by transferring
from on	e, m	naking it A
puts the	e where yo	ou want it to go and where it
gives you the greatest	The main purpo	ose of a machine is to
the	or	of the
force.		
2. List the six basic simple	machines here.	

The Six Simple Machines

For each of the six simple machines, write a description of the machine and give at least one example.

Simple Machine	Description	Example
Lever		
Inclined Plane		

Wheel and Axle	
Wedge	
Pulley	
Screw	

Classes of Levers

Sketch a 1st 2nd, and 3rd class lever and give an example for each.

1 st Class	2 nd Class	3 rd Class
Example:	Example:	Example:
Example.	Example.	Example.

Mechanical Advantage and Efficiency

3.	Define mechanical advantage in words.
4. ·	The formula for mechanical advantage is $ extit{\it M}A = rac{F_{out}}{F_{in}}$
D	efine F_{out} :
D	efine F_{in} :
5.	Define efficiency in words.
6.	The formula for efficiency is $\ eff=rac{{{W}_{out}}}{{{W}_{in}}}$
D	efine ${\it W}_{out}$:
D	efine ${\it W}_{in}$:

7.	Fill in	the bla	ank below	about	efficiency	/.
----	---------	---------	-----------	-------	------------	----

Mechanical Advantage Practice

Match the situation to its corresponding mechanical advantage.

Situation

An input force of 60 N lifts a load of 120 N

An input force of 17 N lifts a load of 120 N

An input force of 20 N lifts a load of 120 N

An input force of 24 N lifts a load of 120 N

Mechanical Advantage

$$M.A. = 5$$

$$M.A. = 2$$

$$M.A > = 6$$

Machines and Work

1. Identify an example of a machine that changes the direction of a force.

[
1			

2.	What physical quantity is measured to determine mechanical advantage?
3.	Why does every machine in the real world have an efficiency less than 100%?
4.	What would the efficiency be for an ideal machine, one that doesn't lose anything to friction or heat?

Bringing It All Together

Complete the table on the next page with each quantity and its supporting work for the problem given.

A pulley system is used to lift a 2,000 N grand piano 3 meters. The mover applies 300 N of force in the process.

	Mechanical Advantage	Work Output	Work Input	Efficiency
Work				
Solutions				