Guided Lesson Notes

Name:	Date:
Ene	ergy
Directions: Complete this study guide as you notes, you are more likely to remember what guide can be used for practice activities and to save each study guide so you can access Essential Vocabulary	t you are learning. The completed study to prepare for quizzes and exams. Be sure
As you encounter these scientific terms i example (or two) for each. You can even unfamiliar words you find, enter them in t	draw a picture. If there are other
energy	kinetic energy
work-energy theorem	elastic potential energy
law of conservation of energy	gravitational potential energy

mechanical er	nergy	system			
Machanical					
Mechanical En	anks about energy.				
	and about energy.				
Energy is					
2. Define mecl	2. Define mechanical energy and give three examples of it.				
Definition:					
Example 1					
		I			
Example 2					

E	xample 3	
3.	What is the	law of conservation of energy?
<u> 4n</u>	<u>Overview</u>	
1.	Which type	of energy will we discuss in this class?

2. Define gravitational potential energy, elastic potential energy, and kinetic energy and give its formula.

Name	Definition	Formula
Gravitation potential energy		
Elastic potential energy		
Kinetic energy		

4. Complete the equa	tion for total energy.
otal Energy =	++++
5. Fill in the blanks a	bout the work-energy theorem.
To change the	energy of a or an is
	must be done to change an object's
6. Write the equation equation.	for the work-energy theorem. Then define each term in the
Work-energy theorem equation:	
W =	
$\Delta KE =$	
$KE_{final} =$	
KE _{initial} =	

3. Describe the total energy inside a closed system.

Gravitational Potential Energy

1. Write the formula for gravitational potential energy.
2. Fill in the blanks below about gravitational potential energy.
Gravitational potential energy (GPE) is the an object has that depends on
of the Earth it is. In other words, it is the energy that it has due to its
3. Why is the GPE the same for an object lifted 2 meters, pushed up a ramp to a height of 2 meters, and carried of stairs to a height of 2 meters?
GPE in Roller Coasters
(continue on next page)

Draw lines to match the height of these roller coasters to the gravitational potential energy of an 8,350 kg car on the ride.

1	
	GPE = mgh
	1.036 x 10 ⁷ J
•	
	5.742 x 10 ⁶ J
	6.117 x 10 ⁶ J
•	
	1.049 x 10 ⁷ J
•	
	7.615 x 10 ⁶ J

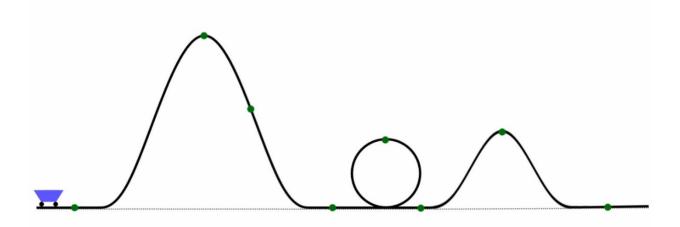
Kinetic Energy

1. Write the formula for kinetic energy.

2. Fill in the blanks below about kinetic energy.

An object that has energy due to its _____ has ____ to the

of the object and _		_ it is
moving. Energy is not a	_ quantity, so kinetic	_ is also
not a vector. You can use the	of the	_ in the
equation regardless of	That kinetic energy provides the	object an
to do	on other	In other
words, that kinetic energy can be	to another object o	r
from one	to another on this	

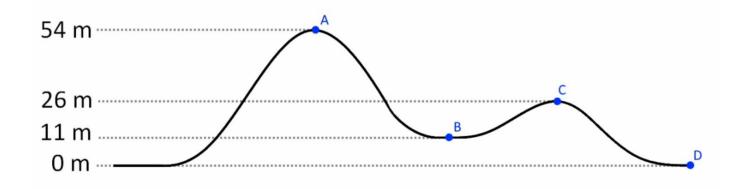

KE in Roller Coasters

Draw lines to match the speed of these roller coasters to the kinetic energy of an 8,350-kg car on the ride.

Speed	GPE = mgh
52.22 m/s	5.742 x 10 ⁶ J
44.09 m/s	$7.740 \times 10^6 \text{ J}$
43.06 m/s	$6.117 \times 10^6 \mathrm{J}$
38.28 m/s	$1.138 \times 10^7 \text{ J}$
37.09 m/s	8.114 x 10 ⁶ J

The Conservation of Energy

1. Complete this drawing with the labels provided in the video.



2. Are roller coasters the only objects that obey the law of conservation of momentum?

Conservation of Energy Example

Use the diagram below to answer some questions about a roller coaster.

1. What is the	e gravitational potential energy at Point A (54 m)? Show your work.
Solution:	
2. How fast is	s the roller coaster moving at Point C (26 m) when it goes over the top of
the second	d hill? Show your work.
Solution:	
2 What is the	a general form of the law of concervation of energy? What does it mean in
words?	e general form of the law of conservation of energy? What does it mean in

Putting It All Together

	he Fahrenheit	t, The Storm	n Runner, or	The Blob Jur	np.	