Guided Lesson Notes

ame: Date:					
Newton's Second Law					
Directions: Complete this study guide as you move through the lesson. By taking notes, you are more likely to remember what you are learning. The completed study guide can be used for practice activities and to prepare for quizzes and exams. Be sure to save each study guide so you can access it when you need it.					
Essential Vocabulary					
example (or two) for each. You can eve	As you encounter these scientific terms in the lesson, enter the meaning and an example (or two) for each. You can even draw a picture. If there are other unfamiliar words you find, enter them in the blank spaces provided.				
Newton's Second Law	weight				
net force					

Newton's Law	<u>s</u>	
What is Newto	on's first law — the law of inertia?	
Mass and We	<u>ght</u>	
1. Fill in the b	planks about mass and weight.	
Mass is a	of the object's	to
	, but it is also a measure o	
	is in that object. In other words, the more	
an object cor	ntains, the more it has.	
Weight is a	of the	
	Of the	
	·	
2. Write the f	ormula for weight and define each of the variables	6 .
	-	
Equation:		
Variables:		

3.	What are two different ways to write the units of weight?
	wton's First and Second Laws What is the Latin definition of <i>inertia</i> ?
2.	Fill in the blanks about mass and inertia.
N	lore = more = more = more
3.	Define equilibrium in terms of net force and motion.
4.	Fill in the blanks about forces and acceleration.
	orces balanced ↔ Net not equal to

5. Fill in the blanks below about Newton's second law of motion

The	_ of an object is	
	_ to the	acting on the
object and	proportional to the object's	

6. Complete the following statements using the appropriate up or down arrows.

When net force,	acceleration
When mass,	acceleration

Using $\vec{F} = m\vec{a}$

For each of the problems shown, write Newton's second law as an equation that you can use to solve the problem. Then write the answer, including proper units (see the questions for units).

Question	F = ma applied to question	Solution, with units
A dog can drag a 40.0-kg sled at a rate of 2.00 m/s ² . How much force (in Newtons) is the dog exerting?		
What net external force (in Newtons) is required to give a 24.0-kg box an acceleration of 3.30 m/s² to the left?		

You are applying a force of 200 N to push a box that has a mass of 20.0 kg across the floor. What is the box's acceleration rate (in m/s²)?	
What force (in Newtons) must be applied to push a 50.0-kg weight at 5.00 m/s ² ?	
What is the acceleration (in m/s²) of a 400-kg box that has an 800 N force applied to it?	
What mass is accelerated at 50.0 m/s² by a 200-Newton force?	

Finding Net Force First

1.	For the paddle	eboarder problem:			
	Draw the free-body diagram for the paddleboarder problem.				
	Use the free-body diagram to determine to net force.				
	Apply Newton's	s second law to find the acceleration.			
1	Net force:				
	Acceleration:				
2.	Is the angle o	f the acceleration always the same as the angle of the net force?			

Net Force and Newton's Second Law Practice

Choose one	problem from	this page and	l complete t	the table fo	or that p	roblem.
Select from:	Stalled car or	Chew toy.				

Prok	olem:				
	Pict	ture	Given/Find	Equation	Solution
<u>Apply</u>	ing Kir	nematics to F	Force Problems		
1. Ap	ply Ne	wton's seco	nd law to the follow	ing kinematics prol	blem.
A shopper in a supermarket pushes a 50.0-kg loaded card with a horizontal force of 17.5 N. The floor provides a frictional force of 2.4 N.					
a.	a. What is the acceleration of the shopping cart?				
b.	b. If the cart starts from rest, how long does it take the cart to reach a speed of 3.4 m/s?				

Working Ba	e the three steps involved in working backwards to find a resistance
Step 1:	
Step 2:	
Step 3:	
2. For the	motorboat example, complete the table.

c. How far does the cart roll as it accelerates from rest to 3.4 m/s?

Picture	Given/Find	Equation	Solution