Summary

ENGEX™: A novel exosome engineering platform enabling targeted transfer of pharmaceutical molecules

What are exosomes?

- Exosomes are extracellular vesicles (30-200 nm) that convey complex molecules and biological signals between cells.
- Convey and protect complex macromolecules that alter the function of recipient cells (tumor vs. non-immunogenic).

CD9 Biodesics is developing a therapeutic platform utilizing exosome biology, known as ENGEX™.

ENGEX™ is a novel exosome engineering platform enabling targeted transfer of pharmacological molecules.

What are EWI-IGSF proteins?

- A variety of cell types was purified using the same method and subjected to proteomic analysis.
- Proteomic analysis by LC/MS-MS led to the identification of highly conserved EWI-IGSF proteins.

What is PTGFRN?

- PTGFRN IGSF3 IGSF8

Exosome Signaling

- PTGFRN did not alter the broader protein composition of secreted exosomes.

Exosome Fraction (PSM)

- PTGFRN overexpression enhanced activity of exosome-mediated delivery of STING agonist.

Exosome-mediated delivery of STING agonist

- PTGFRN overexpression enhanced activity of exosome-mediated delivery of STING agonist.

Stable cellular expression of PTGFRN resulted in 150-fold enrichment of PTGFRN on exosome surface

- PTGFRN packages fusion proteins into exosomes.

Exosome Signaling

- PTGFRN packages fusion proteins into exosomes more efficiently than conventional scaffolds.

Exosome Signaling

- PTGFRN packages fusion proteins into exosomes more efficiently than conventional scaffolds.

Exosome Signaling

- PTGFRN packages fusion proteins into exosomes more efficiently than conventional scaffolds.

Exosome Signaling

- PTGFRN packages fusion proteins into exosomes more efficiently than conventional scaffolds.

Exosome Signaling

- PTGFRN packages fusion proteins into exosomes more efficiently than conventional scaffolds.

Exosome Signaling

- PTGFRN packages fusion proteins into exosomes more efficiently than conventional scaffolds.