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Motivation

Why this matters: Land Surface Boundary Conditions
(LSBCs) like Land Use (LU) and Land Cover (LC) are crucial
for modulating regional climate.

What they do: They regulate the exchange of energy, water,
and carbon between the land and atmosphere.

The Benefit: Better representation leads to more realistic
climate models and improved near-surface weather
predictions.

The Problem: We lack consistent, high-resolution datasets
for historical periods (pre-EQO) and future projections.
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Objective & approach

Goal: Create a spatiotemporal super-resolution framework
to generate consistent, high-resolution Land Surface
Boundary Conditions.

Phased Plan:

e Phase 1: Produce annually varying Land Use (LU) and
Land Cover (LC).

e Phase 2: Expand to predict high-frequency
(weekly/monthly) Leaf Area Index (LAI).




Land use

This figure illustrates the timeline and data sources for our

framework.

Dynamic Predictors: We use coarse (30km) LUH2h data.

Static Predictors: We use high-resolution (1km) data for
topography, soil, and climate zones*.

Training Target: The model is trained on high-resolution
(1km) HILDA+ data.

Final Output: A consistent, 1km resolution LU dataset
spanning 1850-2100.

* we are working on to incorporate climate zones as dynamic predictor.
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Model and training configuration

The core of our pipeline is a U-Net model.
Inputs: The model combines three key data streams:

e  Coarse-resolution fractional LU maps.
High-resolution static variable maps (Topography, soil
texture, climatic zones).

e A masked, high-resolution LU map from a prior time
step.

Output: The U-Net predicts the final, high-resolution Land
Use map.
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Preliminary results

Overall Performance: Trained on 30k samples, with 5-fold
cross-validation, our U-Net achieved a 0.626 mean IoU
(mIoU), with average 94% accuracy across classes.

Class Accuracy F1 IoU
Ocean 1.0000 0.9999 0.9999
Urban 0.5554 0.6656 0.4998
Cropland 0.9112 0.8978 0.8154
Pasture 0.9079 0.8996 0.8183
Forest 0.9415 0.9403 0.8878
Grass/shrubland 0.8046 0.8270 0.7064
Other land 0.9651 0.9669 0.9364
Water 0.7774 0.8404 0.7281
Year 0 Year 1 Average
Accuracy 0.9462  0.9449 0.9455
Macro F1 0.8807  0.8787 0.8797
Weighted F1 0.9458  0.9445 0.9452
Mean IoU 0.8005  0.7976 0.7990
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Next steps:

Phase 1 (Complete): Build a global inference pipeline to
merge prediction tiles and produce seamless, high-resolution
LU and LC datasets.

Phase 2 (Implement): Extend the framework to predict
high-frequency variables, specifically weekly or monthly Leaf
Area Index (LAI).

Future Goal: Explore more advanced sequential and
multi-task architectures to improve dynamic modelling.

Integration: Couple the validated models into
weather-climate frameworks to serve as real-time land
surface emulators for Digital Twins of the Earth.
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