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Motivation
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Why this matters: Land Surface Boundary Conditions 
(LSBCs) like Land Use (LU) and Land Cover (LC) are crucial 
for modulating regional climate.

What they do: They regulate the exchange of energy, water, 
and carbon between the land and atmosphere.

The Benefit: Better representation leads to more realistic 
climate models and improved near-surface weather 
predictions.

The Problem: We lack consistent, high-resolution datasets 
for historical periods (pre-EO) and future projections.

https://unsplash.com/@tamofoto?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/a-lone-tree-in-the-middle-of-a-field-C2vZ5-5ZbVE?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Objective & approach 

Goal: Create a spatiotemporal super-resolution framework 
to generate consistent, high-resolution Land Surface 
Boundary Conditions.

Phased Plan:

● Phase 1: Produce annually varying Land Use (LU) and 
Land Cover (LC).

● Phase 2: Expand to predict high-frequency 
(weekly/monthly) Leaf Area Index (LAI).



Land use 

This figure illustrates the timeline and data sources for our 
framework.

Dynamic Predictors: We use coarse (30km) LUH2h data.

Static Predictors: We use high-resolution (1km) data for 
topography, soil, and climate zones*.

Training Target: The model is trained on high-resolution 
(1km) HILDA+ data.

Final Output: A consistent, 1km resolution LU dataset 
spanning 1850-2100.

* we are working on to incorporate climate zones as dynamic predictor.



Model and training configuration

The core of our pipeline is a U-Net model.

Inputs: The model combines three key data streams:

● Coarse-resolution fractional LU maps.
● High-resolution static variable maps (Topography, soil 

texture, climatic zones).
● A masked, high-resolution LU map from a prior time 

step.

Output: The U-Net predicts the final, high-resolution Land 
Use map.



Preliminary results

Overall Performance: Trained on 30k samples, with 5-fold 
cross-validation,  our U-Net achieved a 0.626 mean IoU 
(mIoU), with average 94% accuracy across classes. 



Next steps: 

Phase 1 (Complete): Build a global inference pipeline to 
merge prediction tiles and produce seamless, high-resolution 
LU and LC datasets.

Phase 2 (Implement): Extend the framework to predict 
high-frequency variables, specifically weekly or monthly Leaf 
Area Index (LAI).

Future Goal: Explore more advanced sequential and 
multi-task architectures to improve dynamic modelling.

Integration: Couple the validated models into 
weather-climate frameworks to serve as real-time land 
surface emulators for Digital Twins of the Earth.
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