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Background 
Land Use (LU), Land Cover (LC), and Leaf Area Index (LAI) act as boundary conditions for the atmosphere aloft, and are crucial for the modulation of local and 
regional climate, regulating energy, water, and carbon exchanges, and playing a key role in the terrestrial carbon cycle.

● Improved representation of land-atmosphere interactions ensures more realistic fluxes of water, energy, and carbon towards the atmosphere.
● Enhanced forecasts and projections improve near-surface weather and climate predictions for better risk management, adaptation, and mitigation.

Earth Observation (EO) provides global coverage for Land Surface Boundary Conditions (LSBC), but for historical data and future projections, we lack 
consistent high-resolution datasets. In this project, we try to tackle this challenge in two phases. Phase one: producing annually varying LU and LC. Phase two: 
expanding to weekly varying LAI.

We have created a super-resolution framework that will allow us to 
consistently generate LU datasets from as far back as 1850 (the start of 
industrialization) to future projections up to the year 2100. Figure 1 shows 
the temporal coverage of the dynamic predictors (LU), static predictors 
(topography, soil texture, and climatic zones), target LU, and inference 
period.

Spatiotemporal Super Resolution

● Complete LU/LC Reconstruction (Phase 1): Build a global inference 

pipeline for merging tiles to produce seamless LU datasets, and extend 

the model to predict high-resolution LC.

● Implement Dynamic Modeling (Phase 2): Extend the framework to 

predict high-frequency variables, specifically weekly or monthly Leaf 

LAI, and to explore sequential and multi-task architectures.

● Integrate Models as Emulators: Couple the validated LU, LC, and LAI 

models into weather-climate frameworks to serve as real-time land 

surface parameters emulators for Digital Twins.

Results
Trained on 30k samples, our U-Net achieved a 0.626 mIoU (90% accuracy 
w/ 75% masking). Analysis of the mIoU score shows robust detection of 
dominant classes but confusion between similar vegetation types. This 
problem was amplified for underrepresented LU types, where mIoU 
dropped to ~0.42. Figure 3 provides a qualitative example of this task, 
illustrating the input channels, masked prior, and the resulting model 
predictions for the years 2004 and 2005.

Our data pipeline processes static and dynamic channels at flexible 
spatial resolutions, using multiple prior time steps to generate multiple 
prediction steps. This framework enables both forward (forecasting) and 
backward (hindcasting) predictions. We tested CNN, XGBoost, and U-Net 
models, with U-Net outperforming the others in both accuracy and 
computational efficiency. In our U-Net model, prior steps are masked to 
ensure the model learns to predict, not just copy prior states. Future Work & Outlook 
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Figure 2: Overview of the LU reconstruction pipeline. The U-Net model combines coarse-resolution LU, static 
data (elevation, soil, climate), and a masked prior LU map to predict the final high-resolution LU output.

Figure 3: Qualitative results for the Himalayas region (Year 2003). The figure displays the full stack of input channels, including 12 
coarse fractional LU inputs (top-left), 6 high-resolution static variables (middle-left), and the masked HILDA prior (bottom-left). The 
model's multi-step predictions (right) for two time steps (t=0, t=1) show strong agreement with the ground truth, achieving ~94% 
accuracy and a Mean IoU of ~0.73.

Figure 1: Temporal coverage of the framework's data. This includes the dynamic predictors (coarse 30 km LUH2h), 
static predictors (1 km topography, soil, and climate), the high-resolution training target (1 km HILDA+), and the final 
inferred 1 km LU output for 1850-2100.


