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Abstract

Uncertainty in the terrestrial carbon cycle remains a major constraint in climate
projections, partly driven by the uncertainties affecting the land surface representa-
tion and variability in Earth system models. To address this limitation, we propose
a data-driven framework for generating high-resolution historical reconstructions
and future projections of key land surface variables. The framework will follow
a two-phase approach using a U-Net architecture. In the first phase, it will recon-
struct annual land use and land cover by integrating coarse-resolution scenario
data and climate reanalysis with static geophysical features. In the second phase,
the resulting high-resolution maps will be used to predict dynamic biophysical
variables, particularly leaf area index, at finer temporal scales. Trained on Earth
Observation data, the models learn to reproduce spatially explicit and physically
consistent land surface patterns, extending temporal coverage to periods lacking
direct observations. The final product will be a suite of open-source emulators
designed for real-time coupling with digital twin platforms, such as those developed
under the Destination Earth initiative. By delivering realistic and evolving land
surface conditions on demand, this work aims to reduce critical uncertainties and
improve the predictive power of next-generation climate simulations.

1 Introduction

The terrestrial carbon cycle remains a major source of uncertainty in climate projections [3], partly
because land surface processes are not fully resolved. Land-use (LU) and land-cover (LC) changes
are significant sources of uncertainty in estimating carbon fluxes [[10]. Relying on coarse or outdated
land boundary data can further lead to misrepresentation of land—atmosphere exchanges. Studies have
shown that coarse land cover spatial resolutions can introduce substantial biases in simulated terrestrial
carbon sequestration, affecting its magnitude, interannual variability, and spatial distribution [33]]. By
contrast, providing high-resolution (=1 km) land surface information, such as detailed land cover
maps, leaf area index (LAI), or satellite vegetation indices like Normalized Difference Vegetation
Index (NDVI), enhanced vegetation index (EVI), and soil-adjusted vegetation index (SAVI), allows
climate models to capture fine-scale heterogeneity in vegetation and soil characteristics. This
improved detail enhances the realism of carbon, water, and energy fluxes between the land and
atmosphere. For example, using a new 1 km-resolution land parameter dataset in a land model
produced pronounced spatial variability in soil moisture and surface fluxes (latent heat and radiation),
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whereas aggregating those inputs to ~12 km led to a loss of about 31-54% of the spatial information
[L7]. High-resolution vegetation data are particularly crucial, since changes in LAI or greenness
directly affect processes like photosynthesis (carbon uptake), evapotranspiration, and surface energy
balance. For instance, a drop in LAI reduces canopy shading, increases ground net radiation, and
dries out soil moisture [4}9]]. Accurate representation of high-resolution land boundary conditions
in climate models is essential for reducing uncertainties in the terrestrial carbon cycle and for
improving simulations of coupled carbon—-water—energy fluxes [10]. Complementing this, advances
in remote sensing of vegetation provide critical observational constraints that enhance the monitoring,
understanding, and modelling of these land—atmosphere interactions [26]. Several datasets offer
valuable insights into land surface boundaries, but each falls short in terms of spatial resolution,
temporal (historical or future), and global coverage, or continuity [[13} 7, 130} 19, 20, 5]. Building
on these insights and datasets, our work aims to reduce uncertainties in terrestrial carbon cycle
representation by developing high-resolution land surface boundary datasets that span historical,
contemporary, and future periods. By integrating satellite-era observations with reconstructions
for pre-observation times and projections for observation-limited futures, we provide temporally
continuous, spatially detailed datasets for use in climate and weather models. These datasets
are designed to improve the representation of land surface heterogeneity, enabling more accurate
simulations of carbon, water, and energy fluxes over time.

2 Related Approaches

A broad spectrum of machine learning (ML) techniques is increasingly employed for historical recon-
struction, gap filling, and future projection of land surface variables such as LU, LC, LAI, NDVI,
EVI, and SAVI. These approaches have expanded the capacity to generate temporally and spatially
continuous datasets, particularly in regions with sparse observations. Among them, tree-based meth-
ods—particularly random forests (RF), have been widely adopted for diverse tasks including cropland
reconstruction [31]], LU/LC change estimation [[1], high-resolution NDVI reconstruction [28]], and the
downscaling and gap filling of vegetation datasets [29]]. RF has also been utilized to model vegetation
health responses under climate variability [15]. XGBoost, another ensemble-based method, has
shown strong performance in the historical reconstruction of LC and LAI [22]. Meanwhile, recurrent
architectures such as long short-term memory (LSTM) networks have demonstrated effectiveness in
reconstructing historical time series [32]], forecasting LU change [34], and estimating LAT [21. [18]].
In parallel, convolutional neural networks (CNNs) have been employed for spatial downscaling of
remote sensing products [[14] and regional-scale prediction of LAI [16]], underscoring their ability to
capture spatial hierarchies and fine-scale variability.

3 Proposed Approaches

To generate temporally continuous, spatially detailed land surface boundaries, we propose a two-step
approach: first, reconstruct slow-varying variables (LU and LC), then use these outputs to reconstruct
and predict fast-varying components such as LAL.

3.1 Phase One: High-Resolution LU/LC Prediction

In the first phase, we aim to generate historical and future annual LU and LC maps at high spatial
resolution (1 km), derived from coarse-resolution inputs (0.25°, ~28 km). The goal is to produce high-
resolution LU maps for a target year ¢ (H;), with each pixel classified into predefined categories (e.g.,
Forest, Cropland, Urban). Ground-truth labels are sourced from the high-resolution HILDA+ LU/LC
dataset [30]. The input tensor for year ¢ is a multichannel stack comprising Land-Use Harmonization 2
(LUH2) data for year ¢ [13], static topographic features (elevation and bathymetry) [11]], and an
autoregressive prior from year t—1 or ¢+1 to enable bidirectional prediction. We implemented an
initial version of the LU using a U-Net architecture [27] for 512-by-512-pixel samples and discussed
it in more detail in[section Al Additional features will include current and projected Koppen-Geiger
climate classifications [2]], as well as static soil characteristics such as texture and type. For annual
reconstruction and projection of high-resolution LC, we will use the upscaled ESA CCI LC dataset
[6] at 1 km resolution as ground truth. Additional predictors include climate variables—annual
temperature, precipitation, solar radiation, and soil moisture—sourced from ERAS5 [12]] and ERAS
Land [23].
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Figure 1: Overview of the LU reconstruction pipeline: A U-Net model takes as input coarse-resolution
LUH2 land-use classes (e.g., forest, pasture), land surface parameters, high-resolution climatic zones,
and static environmental variables (e.g., elevation, slope, soil). Masked land-use data from an adjacent
year, preceding for reconstruction or following for forecasting, is added as auxiliary input. The
standard U-Net then segments and predicts high-resolution land-use classes for the target year.

3.2 Phase Two: High-Resolution Dynamic Biophysical Parameter Prediction

Building on the results of phase one, this stage extends the framework to predict continuous biophysi-
cal variables characterizing vegetation state. Specifically, we aim to generate high-resolution maps
of leaf area index (LAI,) for a given time step t (monthly or sub-monthly). Ground-truth data are
provided by the ESA CCI LAI product [[7,8]. The input tensor includes all features from phase one,
augmented with high-frequency climate data, monthly or sub-monthly records from ERAS5 [12] and
ERAS Land [23]], and atmospheric CO, concentrations as [25], as well as a prior mask of LAI. These
variables directly influence vegetation dynamics and phenology. While the core U-Net architecture is
retained, we also explore sequential models to capture the strong temporal dependencies inherent in
vegetation processes. We investigate the feasibility and limitations of a two-phase training strategy.
Specifically, we compare separate LAI models, each using the outputs of the phase one model as
input, with a joint multi-task model that simultaneously predicts LU, LC, and LAI. We will evaluate
both approaches in terms of accuracy, computational efficiency, error propagation, and uncertainty.

4 Pathway to Impact

In this study, we propose a methodology to estimate historical and future land surface boundary
conditions essential for improving weather and climate prediction. Advancing data-driven modeling,
these datasets will enable more accurate and reliable forecasting across the climate science community
and support ultra-high-resolution digital twins of the Earth. Within this framework, our models act as
dynamic, online boundary condition generators, coupled in real time with digital twin infrastructure,
producing high-resolution, time-evolving LU, LC, and LAI maps that respond to climate change. To
ensure transparency, reproducibility, and broad engagement, all datasets and models will be released
as open-source, including code and pretrained weights, supporting continued innovation in Earth
system modeling.
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A Appendix

Preliminary Results

In phase one, we developed the backbone for LU reconstruction and projection using a U-Net
architecture. A preprocessing pipeline was established to align all input datasets to the grid and
projection of the target dataset HILDA+ [30], at 1 km resolution in WGS84. All datasets were stored
as 3D cubes in Zarr format [24]], chunked in 512 x 512-pixel blocks for efficient retrieval. Initial
inputs included coarse-resolution LUH2h data comprising 12 fractional LU variables (ranging from 0
to 1) and two land surface parameters standardized to unit variance on a 0.25° x 0.25° (~31 km)
grid [13]. High-resolution GEBCO data provided elevation and bathymetry [[11]. The target HILDA+
dataset originally contained 13 classes, which we consolidated into 8 LU categories for this stage.
A prior LU map, partially masked with randomly selected 32 x 32-pixel patches, was added as an
auxiliary input channel.

The model employed a standard U-Net with 16 base channels, accepting 512 x 512-pixel inputs. Its
encoder consisted of four max-pooling and double-convolution blocks, mirrored by a symmetric
decoder with upsampling and skip connections, terminating in a 1 x 1 convolution for final segmenta-
tion. Trained on 30,000 samples, the model achieved promising performance. Figure 2] shows LU
reconstruction for San Diego in 2001 using LUH2h, elevation, and masked 2000 LU inputs, achieving
90% accuracy under 75% masking. In addition to pixel-wise accuracy, performance was assessed
using the mean Intersection over Union (mloU), yielding a strong score of 0.626 for this case. This
reflects robust performance on dominant landscape classes, though confusion persists between similar
vegetation types (e.g., forest vs. grass/shrubland) and in detecting small features such as inland water
bodies. This pattern was consistent across test regions, where the model achieved an average mloU
of 0.42, highlighting the persistent challenge of identifying underrepresented LU types.
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Figure 2: Reconstruction of the LU map for the city of San Diego for the year 2001, using LUH2h
fractional LU with 25 by 25 resolution, an elevation map, and a prior LU map randomly 75 percent
masked with 32 by 32 pixel patches.
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