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Abstract

Flash floods are increasing in frequency and intensity due to climate change, yet
reliable prediction remains difficult in regions with sparse hydrometeorological
observations. Traditional hydrological models struggle without dense gauge net-
works, while purely data-driven approaches often produce implausible outputs. In
this work, we introduce a theory-guided deep learning framework that integrates
physics-inspired constraints with AlphaEarth satellite embeddings, a newly re-
leased global representation of multi-sensor Earth observation data available in
Google Earth Engine. Our model combines dynamic drivers (rainfall, antecedent
soil moisture) with static context (topography, land cover, and AlphaEarth em-
beddings) while enforcing monotonicity with rainfall, topographic consistency,
and a rainfall–runoff budget. Using Sentinel-1 SAR flood masks from Pakistan as
ground truth, we demonstrate that AlphaEarth embeddings improve spatial detail,
and physics constraints enhance both accuracy and calibration. Our results high-
light the potential of embedding-driven, physics-consistent ML to support climate
adaptation by enabling trustworthy flood prediction in data-scarce regions.

1 Introduction

Climate change is amplifying the frequency and severity of extreme rainfall events worldwide, with
flash floods emerging as one of the most destructive hazards. In South Asia, and particularly in
Pakistan, flash floods cause widespread displacement, infrastructure damage, and loss of life each
year. Unlike riverine flooding, which develops gradually, flash floods are characterized by short
lead times, highly localized triggers, and rapid onset, making them extremely difficult to predict and
manage. Traditional hydrological and hydraulic models require dense networks of rainfall gauges,
streamflow sensors, and soil measurements, infrastructure that is often unavailable in many of the
regions most at risk [10].

The rise of satellite Earth observation (EO) and machine learning (ML) offers new opportunities
to bridge these data gaps [6, 7]. Open EO products, such as IMERG precipitation [2] and SMAP
soil moisture [1], provide near-global, near-real-time inputs for hydrological applications. However,
purely data-driven approaches frequently generate physically implausible predictions [9]. Recently,
two developments offer a pathway forward. First, theory-guided deep learning (TGDL) has emerged
as a paradigm that integrates domain knowledge into ML models by embedding physics-inspired
constraints on model outputs [3]. By enforcing monotonicity, conservation laws, or spatial consistency,
TGDL enhances both generalization and interpretability. Second, Google has released AlphaEarth
Foundations (2025), a global set of annual satellite embeddings derived from multi-sensor data [8].
These embeddings compactly represent environmental context such as vegetation cycles, urbanization,
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and land-water transitions, and can serve as rich inputs for climate adaptation tasks without requiring
extensive preprocessing.

In this work, we leverage these advances to develop a physics-consistent, embedding-driven frame-
work for flash flood prediction in data-scarce regions. Our approach combines dynamic drivers
(rainfall intensity, antecedent moisture) with static context (terrain, AlphaEarth embeddings), while
imposing theory-guided constraints to ensure hydrologically plausible outputs.

Our contributions are threefold:

First integration of AlphaEarth embeddings for flood prediction. We show that these embeddings
capture critical static context (land cover, impervious surfaces, wetland presence) that enhances
spatial detail in flood probability maps.

Design of physics-inspired loss functions. We enforce monotonicity wit rainfall, penalize water
predictions on ridges using HAND-Based topographic constraints, and introduce a rainfall-runoff
budget to penalty to approximate mass balance.

Case study in Pakistan. Using Sentinel-1 SAR flood masks as ground truth, we demonstrate that the
combined approach improves both predictive accuracy and calibration compared to purely data-driven
baselines.

By uniting theory-guided deep learning with global EO embeddings, this work demonstrates how
ML can move beyond black-box pattern recognition toward trustworthy, physics-consistent climate
solutions. Our findings suggest a path for deploying such models in other data-scarce, climate-
vulnerable regions, supporting early warning systems and disaster risk reduction.

2 Related Work

Flood prediction with ML. Machine learning has been widely applied to flood forecasting, often
using rainfall and land surface data as inputs. For example, Mosavi et al. [4] review approaches
ranging from support vector machines to deep neural networks. More recent studies use IMERG
rainfall and Sentinel-1 SAR imagery to derive inundation maps, showing that EO-driven ML can
capture event-level dynamics. However, most methods are purely data-driven and tend to produce
artifacts such as water pooling on ridges or unstable responses to rainfall extremes.

Physics-informed ML. Efforts to integrate physical knowledge into ML have gained traction in
hydrology and climate applications. Karpatne et al. [3] introduced physics-guided neural networks
(PGNNs) to model lake temperatures with physical consistency. Raissi et al. [5] proposed physics-
informed neural networks (PINNs) for solving PDEs directly. Hybrid methods have been explored in
climate modeling [11], but few have applied physics-guided constraints explicitly to flood inundation
prediction.

Satellite embeddings. Representation learning for Earth observation is emerging as a powerful
paradigm. Reichstein et al. [6] highlight how embeddings can capture complex land surface dynamics.
Most embedding work focuses on classification (e.g., land cover, vegetation) or change detection.
AlphaEarth Foundations (2025) [8] introduced globally consistent embeddings across multiple EO
sensors. To our knowledge, no prior work has combined satellite embeddings with physics-guided
ML for operational flood prediction.

3 Methodology

Our framework combines open Earth observation datasets with a deep learning model that is guided
by simple hydrological rules. The workflow is as follows: first, we collect dynamic drivers (rainfall,
soil moisture) and static context (terrain features and AlphaEarth embeddings) for flood-prone regions.
Second, we prepare flood masks from Sentinel-1 SAR imagery to use as labels. These predictors
and labels are sampled into training tiles. Third, a U-Net model is trained to predict pixel-level
flood probabilities. To make the outputs physically meaningful, we add soft constraints that enforce
monotonicity with rainfall, discourage water on ridges, and bound predicted flood volume by rainfall
surplus. Finally, we evaluate the model on held-out flood events using accuracy and calibration
metrics, as well as hydrology-specific checks such as monotonicity and ridge false positives.
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3.1 Study Areas and Data

We study two flood-prone regions in Pakistan with different dynamics: (i) Rawalpindi–Islamabad,
which suffers from short lead-time urban flash floods, and (ii) the Swat Valley, which experiences
convective storms in mountainous terrain.

We use only open datasets available in Google Earth Engine (GEE):

• Rainfall: NASA GPM IMERG V07 (30 min, 0.1°). We compute 6h, 12h, 24h accumulations
and a 7-day antecedent precipitation index (API7).

• Soil Moisture: SMAP L3 daily, averaged over 3–7 days before the event.

• Terrain: SRTM/ALOS elevation, slope, and Height Above Nearest Drainage (HAND).

• AlphaEarth embeddings: 64 annual bands (2017–2024) representing multi-sensor EO
context.

As labels, we use Sentinel-1 SAR pre/post event imagery. Flood masks are created by differencing
VV/VH backscatter, applying a threshold, and cleaning with morphology.

3.2 Model

We use a U-Net that predicts a flood probability map Ŷ for each pixel, given stacked dynamic and
static features.

3.3 Theory-Guided Losses

To make predictions more physically consistent, we add three soft constraints:

1) Monotonicity with rainfall. Flood probability should not decrease if rainfall increases. For a
rainfall-boosted input X+:

Lmono = mean
(
max(0, Ŷ − fθ(X

+))
)
.

2) Topography penalty. Water should not pool on ridges. With H = HAND, we penalize predictions
on high pixels:

Ltopo = mean(Ŷ · 1H>τ ).

3) Rainfall–runoff budget. Predicted flood volume should not exceed rainfall surplus:

Lbudget = max
(
0, Vpred − κ

∑
i

Ri

)
,

where Vpred is predicted flooded area, Ri is pixel runoff, and κ is a scaling factor.

3.4 Training

The total loss is:
L = LBCE + λ1Lmono + λ2Ltopo + λ3Lbudget.

We train on 256× 256 tiles (30 m), using Adam (10−4 learning rate). Class imbalance is handled by
oversampling flooded tiles.

3.5 Evaluation

We split by events to avoid leakage. Metrics include Intersection-over-Union (IoU), F1 score, and
Brier score for calibration. We also report monotonicity checks (percentage of pixels where flood
probability increases under +10% rainfall) and ridge false positives (average Ŷ on high HAND
areas).
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4 Results

4.1 Quantitative Performance

Table 1 shows the results for three models: (1) a baseline U-Net using only rainfall and terrain, (2) the
same model with AlphaEarth embeddings, and (3) the full model with AlphaEarth and physics-guided
losses.

We see clear improvements as each component is added. AlphaEarth embeddings increase
Intersection-over-Union (IoU) from 0.42 to 0.51 by providing richer static context such as land
cover and impervious surfaces. Adding the physics losses further improves IoU to 0.58 and reduces
the Brier score, meaning the predicted probabilities are better calibrated.

Model IoU F1 Brier
Baseline (rainfall+terrain) 0.42 0.59 0.28
+ AlphaEarth embeddings 0.51 0.66 0.23
+ AlphaEarth + Physics-guided 0.58 0.72 0.19

Table 1: Model performance across flood events. Higher IoU/F1 and lower Brier are better.

4.2 Qualitative Analysis

Figure 1 compares flood predictions for the August 2022 Rawalpindi flood. The baseline model
misses several urban inundation patches and also predicts false water on nearby ridges. Adding
AlphaEarth embeddings improves spatial detail, especially along built-up areas where water tends to
accumulate. The physics-guided model further reduces false positives and aligns better with channel
flow visible in the Sentinel-1 reference.

4.3 Additional Checks

We also test for physical consistency:

• Monotonicity: In 94% of test pixels, flood probability increased when rainfall was boosted
by +10%. The baseline achieved only 78%.

• Topography: The average predicted flood probability on ridge pixels (HAND > 80th
percentile) dropped from 0.21 in the baseline to 0.09 in the physics-guided model.

These results show that adding AlphaEarth embeddings and simple physical rules improves both
predictive skill and hydrological plausibility.

Figure 1: Predicted flood probability maps for August 2022 floods (Rawalpindi). Left: SAR reference,
Middle: Baseline, Right: AlphaEarth + Physics-aware model.

5 Discussion

Our findings show that combining AlphaEarth embeddings with simple physics-inspired constraints
can improve both the accuracy and plausibility of flood predictions in data-scarce regions. By
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adding embeddings, the model gains static context such as land cover and impervious surfaces,
while physics-guided losses help remove obvious errors like water pooling on ridges or decreasing
probabilities under heavier rainfall. This balance between data richness and hydrological consistency
makes the approach more reliable for practical use in disaster management. However, the study is
limited by the small number of flood events analyzed and by the coarse resolution of rainfall and soil
moisture inputs, which may introduce uncertainty. Future work should focus on testing across more
diverse regions and events, improving real-time capabilities, and extending the framework to other
hazards such as landslides or wildfires. Ultimately, embedding-driven, theory-guided ML provides a
promising direction for building trustworthy climate adaptation tools.
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