AgriVolT: A Multi-Modal Temporal Vision Transformer for Climate-Informed Commodity Price Forecasting

Sharanya Roy, Krisha Agarwal, Sahir Gupta, Anshul Patil, Ahan M R, Sunishchal Dev, Vasu Sharma, Kevin Zhu

Motivation

- Climate extremes increasingly disrupt agricultural production, creating volatility in staple commodity markets and threatening food security.
- At 2°C warming, 10–31% of current crop production moves outside safe climate zones.
- **733 million** people face food insecurity worldwide (FAO, 2024).
- Food price inflation and volatility are major causes of hunger.

Research Objective

We aim to forecast state-level marketing-year prices for corn, wheat, and soybeans (2015–2023) by modeling temporal and multi-modal dependencies between:

- Climate reanalysis data
- Satellite imagery (Sentinel-2)
- USDA production statistics
- Historical market prices

AgriVolt Framework

- Integrates climate reanalysis, satellite imagery (Sentinel-2), production data (USDA), and historical market prices.
- Employs cross-modal attention and temporal encodings to capture links between weather events and market dynamics.
- Features a price-focused prediction head, directly modeling economic outcomes rather than just crop yields.

Datasets

Dataset Type	Source	Examples of Variables
Climate Data	NOAA HRRR	Temperature, precipitation, radiation, wind, humidity
Remote Sensing	Sentinel- 2	Vegetation indices, droughts, phenology
Productio n Data	USDA NASS	County-level yield, harvested acres
Market Data	USDA	Daily prices (corn, wheat, soybean)

Each data source is aligned by date and county, aggregated to **(state, marketing-year)** samples.

Model Architecture

Tokenization: One token per Sentinel-2 tile per date; one per weather record; one USDA per county.

Image Encoder: 4-stage Pyramid Vision Transformer (PVT).

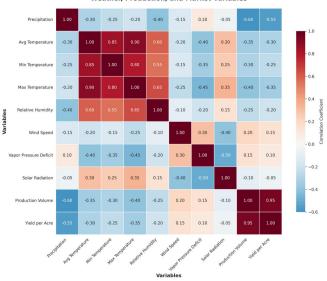
Per-Date Fusion: Cross-attention aligns imagery with concurrent weather & USDA data.

Spatial Transformer: Aggregates tile-level signals per county.

Temporal Transformer: Captures seasonal and lag effects.

Output: MLP head generates state-level price weighted by harvested area.

Crop Price Impact Correlation Matrix Weather, Production, and Market Variables



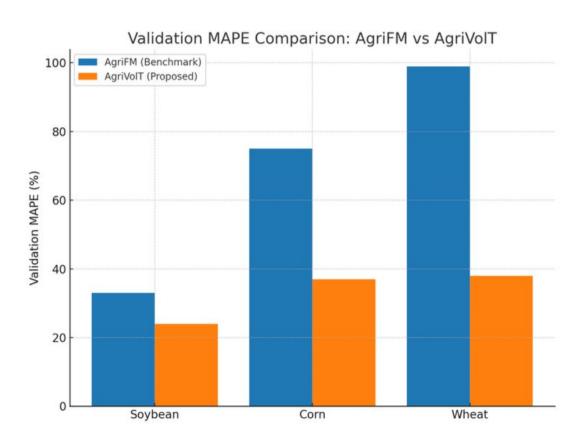
Experimental Setup

- **Crops:** Corn, Wheat, Soybean (U.S., 2015–2023).
- **Evaluation Metrics:** MAE, RMSE, MAPE, SMAPE.
- **Training:** AdamW optimizer, cosine schedule, early stopping.
- Baselines:
 - ARIMA, Prophet (classical)
 - Naïve (previous-year price)
 - XGBoost (nonlinear ML)
 - AgriFM (multi-modal baseline)

Quantitative Results

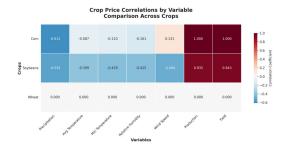
Model	Crop	MAE (USD/bu)	RMSE (USD/bu)	MAPE	SMAPE
ARIMA	Soybean	4.53	5.40	43.56%	35.0%
XGBoost	Soybean	4.10	4.74	32.5%	27.0%
AgriVoIT	Soybean	3.44	4.65	24.39%	19.62%
ARIMA	Corn	1.92	2.19	44.2%	36.0%
AgriVolT	Corn	2.36	2.90	37.12%	27.06%
ARIMA	Wheat	2.47	2.89	44.36%	36.0%
AgriVolT	Wheat	2.85	3.59	38.21%	27.62%

Result Comparison



Insights and Interpretability

- Cross-modal attention maps reveal strong coupling between **precipitation**, **vegetation indices**, **and yield**.
- Temporal encodings enable the model to capture **lagged effects** (e.g., drought \rightarrow yield drop \rightarrow price rise).
- County-level spatial attention preserves local heterogeneity.
- Ablation studies show each modality (imagery, weather, USDA) improves predictive power.



Conclusion and Future Work

Conclusion:

- AgriVolT provides an end-to-end framework for climate-informed commodity price forecasting.
- Outperforms traditional econometric, ML, and existing multi-modal models.

Limitations:

- Does not yet include real-time economic variables or causal inference.
- Focused on three major U.S. crops.

Future Directions:

- Incorporate macroeconomic indicators, policy and trade data.
- Extend to high-frequency and global datasets.
- Develop causal interpretability for market-environment interactions.