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Transformer for Commodity Prices

Motivation/Background

Climate extremes increasingly disrupt global food production, causing
volatility in crop prices and threatening food security. At 2 °C of warming,
10-31% of crop output falls outside its safe zone. Traditional econometric
models fail to capture nonlinear links between climate and market
fluctuations.

AgriVolT aims to forecast U.S. staple crop prices by unifying climate
reanalysis, satellite imagery, crop yield statistics, and market data —
offering early warnings of food price shocks.

Data Overview

Model Architecture

AgriVolT extends MMST-VIT for price forecasting with (1) cross-modal
fusion layers, (2) temporal encoders for season dynamics, and (3) an
economic context head.

Training and Baselines

Training data (2015-2023) divided by marketing year to prevent temporal
leakage.
Baselines for comparison:

e ARIMA, Prophet: Classical time series
e Nalve: Previous-year persistence
e XGBoost: Tabular ML

AgriFM: Deep multimodal baseline

Metrics: MAE, RMSE, MAPE, SMAPE (3-run average).
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Climate extremes increasingly disrupt global food production, causing Variables
volatility in crop prices and threatening food security. At 2 °C of warming, MAPE Comparison between AgriEM and AgrivolT Limitations

10—-31% of crop output falls outside its safe zone. Traditional econometric
models fail to capture nonlinear links between climate and market
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