
Exploring Variational Graph Autoencoders for 

Distribution Grid Data Generation

Why synthetic power grid data?

• Distribution grids are critical for renewable integration and

flexibility planning.

• Real feeder data is rarely shared — security & privacy

concerns limit access.

• Synthetic datasets enable algorithm benchmarking without

exposing sensitive infrastructure.

• Current methods rely on statistical models or heuristic

algorithms, often missing complex topological correlations

and producing unrealistic or overly simplified networks.

• Graph generative models offer a new paradigm — already

successful in biology & chemistry.

• Few applications exist for power grids, which motivates the

exploration of Variational Graph Autoencoders (VGAEs).

The VGAE framework consists of a GCN-based encoder and a 

probabilistic latent space. Four decoder variants were 

evaluated:

• Inner Product

• MLP

• GCN

• Iterative GCN (with refinement loop)

VGAE Model Architecture

How to generate realistic grids?
Two open-source datasets are used to evaluate scalability and 

generalization:

• ENGAGE: Based on SimBench feeders, small (≈100 nodes),

discrete topologies; 3000 training grids.

• DINGO: Large, diverse collection (4,500–7,000 nodes), 

reflecting real grid variability; 2722 training grids.

Future Work

Richer decoders: Explore attention-based or diffusion 

architectures to improve expressiveness.

Physics-aware learning: Incorporate power-flow feasibility and 

operational constraints during generation.

Scalability: Extend models and datasets to handle larger, more 

diverse grid topologies.
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Objective & Metrics

Loss Function:

Evaluation Metrics:

• Average Degree — measures connectivity & radiality.

• Laplacian Spectrum (Wasserstein Distance) — measures 

global structural similarity.

What did we find?

Dataset
Avg. Degree 

(Real)

Avg. Degree 

(Synthetic)

Wasserstein 

Distance

ENGAGE 2.0521 2.0697 0.1039

DINGO 1.9986 2.5300 0.5072

• Iterative-GCN consistently achieved the best structural fidelity 

across both datasets.

• ENGAGE:

1.Synthetic grids are aligned closely with real topologies.

2.Strong agreement in both average degree and spectral 

metrics.

• DINGO:

1.All models struggled with scale and diversity.

2.Common artifacts: over-connected components, repeated 

motifs.

3.Reveals scalability limitations of current VGAE architectures.

• Takeaway:

1.Simple VGAE models reproduce small, uniform feeders well.

2.Large, heterogeneous grids demand more expressive and 

physics-aware generative methods.

ENGAGE Results

DINGO Results
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