Exploring Variational Graph Autoencoders for

Distribution Grid Data Generation

Why synthetic power grid data?

 Distribution grids are critical for renewable integration and
flexibility planning.

 Real feeder data is rarely shared — security & privacy
concerns limit access.

* Synthetic datasets enable algorithm benchmarking without
exposing sensitive infrastructure.

 Current methods rely on statistical models or heuristic
algorithms, often missing complex topological correlations
and producing unrealistic or overly simplified networks.

* Graph generative models offer a new paradigm — already
successful in biology & chemistry.

* Few applications exist for power grids, which motivates the
exploration of Variational Graph Autoencoders (VGAEsSs).

How to generate realistic grids?

Two open-source datasets are used to evaluate scalability and

generalization:

« ENGAGE: Based on SimBench feeders, small (=100 nodes),
discrete topologies; 3000 training grids.

 DINGO: Large, diverse collection (4,500-7,000 nodes),
reflecting real grid variability; 2722 training grids.
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* Average Degree — measures connectivity & radiality.
« Laplacian Spectrum (Wasserstein Distance) — measures
global structural similarity.
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What did we find?

» lterative-GCN consistently achieved the best structural fideli
across both datasets.

- ENGAGE: -

1.Synthetic grids are aligned closely with real topologies.
2.5trong agreement in both average degree and spectral
metrics.
 DINGO:
1.All models struggled with scale and diversity.
2.Common artifacts: over-connected components, repeated
motifs.
3.Reveals scalability limitations of current VGAE architectures.
 Takeaway:
1.Simple VGAE models reproduce small, uniform feeders well.
2.Large, heterogeneous grids demand more expressive and
physics-aware generative methods.
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Future Work

000 025 030 075 L7 200

Richer decoders: Explore attention-based or diffusion
architectures to improve expressiveness.

Physics-aware learning: Incorporate power-flow feasibility and
operational constraints during generation.

Scalability: Extend models and datasets to handle larger, more
diverse grid topologies.



	Slide 1

