Exploring Variational Graph Autoencoders for

Distribution Grid Data Generation

Syed Zain Abbas, Ehimare Okoyomon

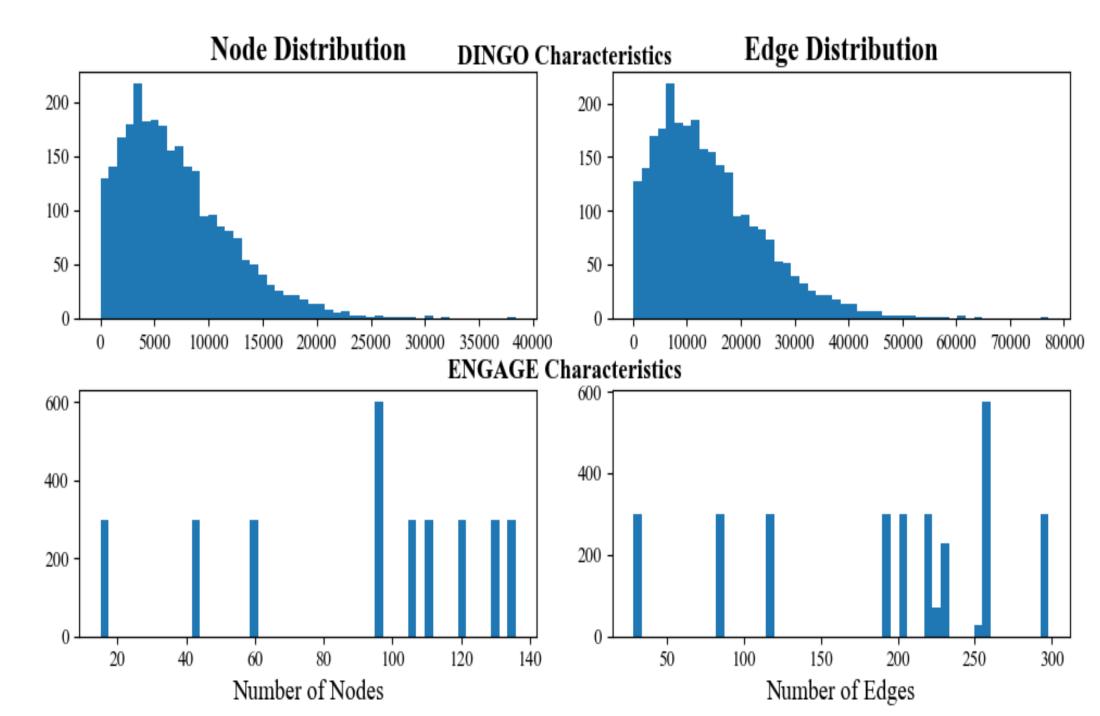
Why synthetic power grid data?

- Distribution grids are critical for renewable integration and flexibility planning.
- Real feeder data is rarely shared security & privacy concerns limit access.
- Synthetic datasets enable algorithm benchmarking without exposing sensitive infrastructure.
- Current methods rely on statistical models or heuristic algorithms, often missing complex topological correlations and producing unrealistic or overly simplified networks.
- Graph generative models offer a new paradigm already successful in biology & chemistry.
- Few applications exist for power grids, which motivates the exploration of Variational Graph Autoencoders (VGAEs).

How to generate realistic grids?

Two open-source datasets are used to evaluate scalability and generalization:

- **ENGAGE**: Based on SimBench feeders, small (≈100 nodes), discrete topologies; 3000 training grids.
- **DINGO**: Large, diverse collection (4,500–7,000 nodes), reflecting real grid variability; 2722 training grids.



VGAE Model Architecture

The VGAE framework consists of a GCN-based encoder and a probabilistic latent space. Four decoder variants were evaluated:

- Inner Product
- MLP
- GCN
- Iterative GCN (with refinement loop)

Objective & Metrics

Loss Function:

$$\mathcal{L} = \mathcal{L}_{reconstruction} + \beta \cdot \mathcal{L}_{KL}$$

Evaluation Metrics:

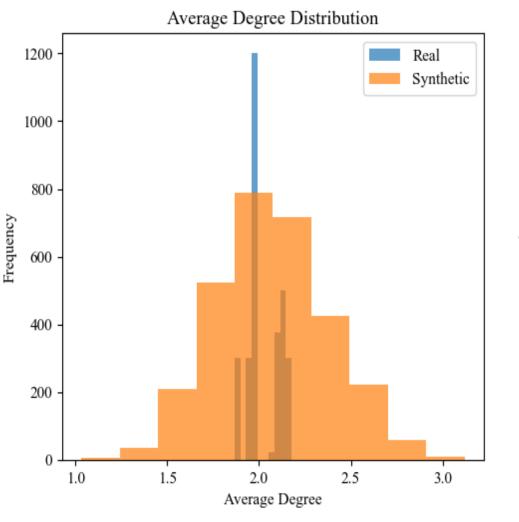
- Average Degree measures connectivity & radiality.
- Laplacian Spectrum (Wasserstein Distance) measures global structural similarity.

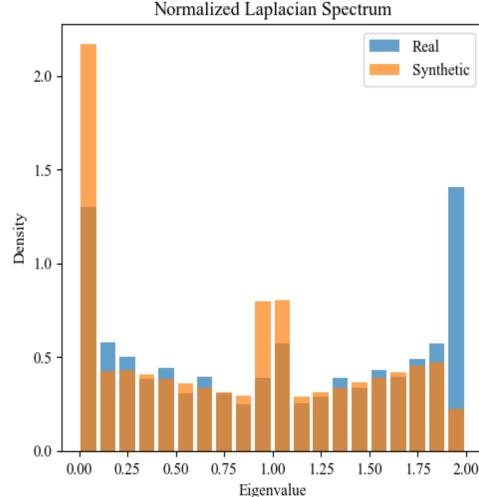
What did we find?

- Iterative-GCN consistently achieved the best structural fideliacross both datasets.
- ENGAGE:
 - 1. Synthetic grids are aligned closely with real topologies.
 - 2.Strong agreement in both average degree and spectral metrics.
- DINGO:
 - 1.All models struggled with scale and diversity.
 - 2.Common artifacts: over-connected components, repeated motifs.
 - 3. Reveals scalability limitations of current VGAE architectures.
- Takeaway:
- 1.Simple VGAE models reproduce small, uniform feeders well.2.Large, heterogeneous grids demand more expressive and physics-aware generative methods.

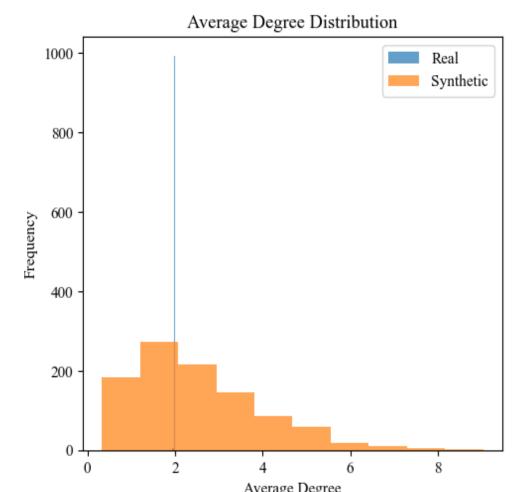
DatasetAvg. Degree (Real)Avg. Degree (Synthetic)Wasserstein DistanceENGAGE2.05212.06970.1039DINGO1.99862.53000.5072

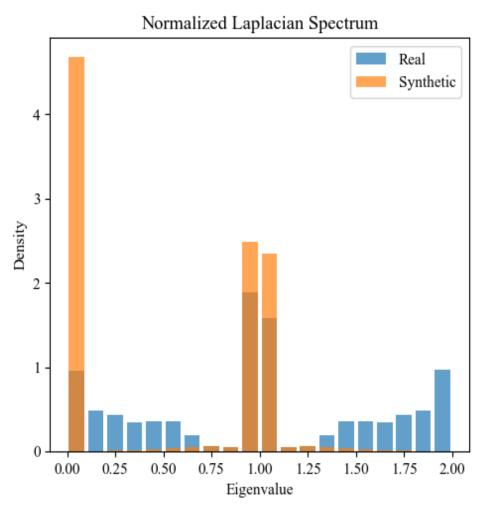
ENGAGE Results





DINGO Results





Future Work

Richer decoders: Explore attention-based or diffusion architectures to improve expressiveness.

Physics-aware learning: Incorporate power-flow feasibility and operational constraints during generation.

Scalability: Extend models and datasets to handle larger, more diverse grid topologies.