Exploring Variational Graph Autoencoders for
Distribution Grid Data Generation

Syed Zain Abbas Ehimare Okoyomon
Technical University of Munich Technical University of Munich
Munich, Germany Munich, Germany
syedzain.abbasQtum.de e.okoyomon@tum.de

Abstract

To address the lack of publicly available power system data for machine learning
research in energy networks, we investigate the use of variational graph autoen-
coders (VGAEs) for generating synthetic distribution grids. Access to detailed
feeder models is constrained by privacy and security considerations; yet such data
is essential for advancing machine learning approaches that enable reliable and flex-
ible operation of distribution grids with high shares of renewable generation. Using
two open-source datasets—ENGAGE and DINGO—we evaluate four decoder
variants and compare the generated networks against real grids using structural and
spectral metrics. Results show that simple decoders fail to capture realistic topolo-
gies, while GCN-based methods achieve strong fidelity on ENGAGE but struggle
with the more complex DINGO dataset, producing artifacts such as disconnected
components and repeated motifs. These findings highlight both the potential and
limitations of VGAE:s for grid synthesis, underscoring the need for more expressive
generative models and robust evaluation. We release our models and analysis as
open source to support benchmarking and accelerate progress in ML-driven power
system research.

1 Introduction

The global transition toward decarbonized energy systems is accelerating as societies work to mitigate
climate change. This shift is driving a rapid rise in distributed energy resources (DERs) such as
photovoltaics, batteries, and electric vehicles, which are essential for reducing carbon emissions.
Their inherently variable and decentralized nature, however, introduces new operational challenges:
high renewable penetration can threaten voltage stability and requires distribution networks that are
flexible, resilient, and capable of managing rapid fluctuations in supply and demand. Advanced
data-driven tools, including machine learning, show promise in supporting reliable, low-carbon grid
operation; however, research is constrained by a lack of publicly available distribution grid data.
Utilities are reluctant to share feeder topologies and device information due to security and privacy
concerns Mohammadi and Saleh| (2021). Recent studies emphasize that the quality and coverage
of training data directly affect model generalization (Okoyomon and Goebel| (2025) and feasibility
exploration Joswig-Jones et al.| (2022), making this data scarcity a central barrier to developing
climate-aligned grid planning and control algorithms.

To address this limitation, synthetic grid generation has emerged as a compelling solution. Rather
than relying on sensitive real-world data, researchers construct artificial test systems that emulate
key structural and operational properties of distribution networks. Currently, the most widely used
approaches for generating this data rely on statistical models and heuristic algorithms Mohammadi
and Saleh| (2021). Statistical models approximate real-world feeders by sampling from probability
distributions of observed grid properties, while heuristic algorithms construct networks by solving
optimization problems subject to structural and operational constraints. In practice, both methods

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025.

induce simplified assumptions that restrict their ability to generate data that captures the diversity,
dynamics, and nontrivial relationships that exist in real power systems.

Within the machine learning community, graph-based generative models have gained significant
traction in fields such as biology and chemistry Zhu et al., but relatively few studies have applied
these techniques for power systems. Early contributions include FeederGAN |Liang et al.[(2021)
and DeepGDL [Khodayar and Wang| (2021)), whose designs are described in Appendix [Al However,
both face significant issues in their handling of diverse grids and neither model was released to the
community for application or benchmarking. This underscores the need for flexible and accessible
generative models that are robust and applicable to multiple grid structures and sizes.

This study investigates the use of variational graph autoencoders (VGAESs) as a framework for grid
topology generation. Variational autoencoders combine an efficient probabilistic latent representation
with flexible decoders that can be tailored to structural constraints, while a graph-based approach
allows easy adaptation to various grid topologies. We assess model design across four decoder
variants and two distinct datasets. By comparing results on both a small, standardized benchmark
and a collection of larger, heterogeneous feeders, we highlight the potential and limitations of using
VGAE:s to generate realistic topologies. We release our generative models and experimental analysis
as open source [1_-] to support the development of new algorithms for distribution network operation
and planning, thereby accelerating progress toward a more resilient and sustainable energy system.

2 Methodology

We utilize two open-source distribution grid datasets that differ fundamentally in application objective
and grid diversity (see Appendix [B). The ENGAGE dataset|(Okoyomon| (2025) is a collection of low
and medium voltage grids based on the SimBench networks Meinecke et al.[(2020)), designed to
evaluate the generalization capabilities of power flow models across several grid configurations. Due
to the small grid sizes and the underlying homogeneity of the SimBench networks, the dataset may
not fully capture the diversity found in real-world power systems. The second dataset, DIstribution
Network GeneratOr (DINGO), is a large-scale collection of medium voltage feeders with varying
sizes, topologies, and structural motifs, built to capture the diversity of realistic distribution systems
Amme et al.|(2018). DINGO spans a wide size range and includes both simple and complex radial
patterns, making it more challenging for generative models to reproduce faithfully.

VGAE:s learn a latent representation of network structure through a graph neural encoder and
reconstruct graphs via a decoder that predicts edge probabilities Kipf and Welling (2016). Four
decoder types are considered in this work: (a) a simple inner-product form, (b) an MLP, (c) a Graph
Convolutional Network (GCN)-based decoder, and (d) an Iterative-GCN with a refinement loop.
Appendix [C| presents an overview of the architectures of the encoders and decoders used. After
training, new synthetic networks are generated by sampling latent variables from the prior distribution
and decoding them into adjacency matrices, either in one shot or by using iterative pruning. To
evaluate the different decoders, all models are trained on the full datasets.

The models are trained to minimize a variational loss (Appendix D) that combines reconstruction
accuracy with a Kullback—Leibler (KL) divergence term to regularize the latent space Kipf and Welling
(2016)). Evaluation relies on two complementary structural metrics: (average) node degree and the
normalized Laplacian spectrum, with similarity quantified using the one-dimensional Wasserstein
distance|O’Bray et al.|(2022). These jointly capture local connectivity and global structural alignment,
providing a balanced measure of model fidelity (see Appendix [E).

3 Results and Discussion

Figure [I]illustrates typical loss curves for each decoder variant. The Inner Product decoder performs
poorly on both reconstruction and KL loss, as its simplicity is inadequate for capturing the com-
plexity of grid structures. The MLP decoder shows promising KL loss progression; however, its
reconstruction loss plateaus, primarily due to its limited expressive capacity for edge reconstruction
in heterogeneous graphs. In contrast, the GCN and Iterative-GCN decoders exhibit similar trends, as
their training mechanisms differ only in the graph generation procedure, as outlined in Appendix

'Source code: https://github.com/SyedZainAbbas/GridGEN

https://github.com/SyedZainAbbas/GridGEN

Inner Product MLP GCN Iterative GCN
5 20 20 2
@ 47 \’ 1.5 15 154
H —_
- 3
E
“
4
= 05 4 0.5 4 054
0 T T 00 1= T T 001 T T 00 T T
0 10 20 0 10 20 0 20 40 0 10 0 30
20 20 0 0
1.5 1.5 15 15
2
=l
= 1.0 1.0 L0 Lo
05 05 05 05
0.0 T T 0.0 T T 0.0 T T 0.0 T T T
0 10 20 0 10 20 0 20 40 0 10 20 30
Epochs Epochs Epochs Epochs

Figure 1: Training loss curves for the four decoder architectures on the DINGO dataset.

Given the weak performance of the Inner Product and MLP decoders during training, they were
excluded from subsequent graph generation experiments. Instead, only the GCN and Iterative-GCN
decoders were employed to generate synthetic grids. For ENGAGE, 3,000 synthetic graphs were
generated, while for DINGO, 1,000 synthetic grids were produced. During generation, the number of
nodes was randomly selected within the ranges of 90—100 for ENGAGE and 4,500-7,000 for DINGO,
ensuring that the generated graphs were consistent with the scales of the respective training datasets.
Across both datasets and under different configurations, the Iterative-GCN decoder consistently
outperforms its GCN counterpart, yielding the most accurate structural characteristics.

Table 1: Comparison of real and synthetic network properties using the Iterative-GCN model.

Average Degree Normalized Laplacian
Dataset Real Synthetic Wasserstein
Mean Std Mean Std Distance
DINGO 1.9986 0.0115 | 2.5300 1.4651 0.5072
ENGAGE | 2.0521 0.0927 | 2.0697 0.3066 0.1039

The results of the real (training) and synthetic grid comparison are summarized in Table[I] The
ENGAGE-trained synthetic grids closely reproduce the average degree of real networks, indicating
that the generative models can match basic radial structure on small, homogeneous benchmarks.
On DINGO, however, synthetic graphs display a substantially broader degree distribution, failing
to reproduce the average node degree most typical of real feeders. The 1-D Wasserstein distance
enables us to perform a spectral comparison of the two datasets based on the normalized Laplacian,
with lower distances indicating better global structural alignment. ENGAGE exhibits strong spectral
agreement, whereas DINGO shows a large spectral gap, as illustrated in Figures[2]and[3] The DINGO
spectra reveal two recurring failure modes in synthetic graphs: (1) an excess of near-zero eigenvalues,
consistent with weakly connected or disconnected components, and (2) an over-concentration of
mid-range eigenvalues, consistent with repeated artificial motifs.

The performance gap on DINGO versus ENGAGE is driven primarily by dataset complexity. EN-
GAGE consists of smaller, more homogeneous graphs that present a relatively low-entropy target
distribution; in this regime, VGAE priors and decoders can capture both local and global signatures.
In contrast, DINGO spans a wide size range and diverse topologies, yielding a distribution that is
highly challenging for the VGAE latent prior and the expressive power of the decoders studied. This
mismatch implies that success of previous work on specific, smaller grid configurations does not
automatically translate to realism for operationally relevant, large-scale feeders. Therefore, evaluation
should explicitly test transfer from bench-scale to realistic collections.

These findings have practical implications for the responsible use of machine learning for synthetic
grids. Since models trained on datasets that deviate structurally from real networks risk producing
brittle or misleading downstream conclusions, spectral and connectivity diagnostics should accompany
any downstream benchmark to reveal distributional mismatch. Key limitations of the present work

Average Degree Distribution Normalized Laplacian Spectrum

1200 -
Real 204 Real
1000 4 Synthetic Synthetic
2 800 13
g z
] g
2. 600 3 104
S a
B 400 4
0.5
200
0-— T T T T 0.0 T T T T T T T T T
1.0 L5 20 25 3.0 000 025 050 075 100 125 150 175 200
Average Degree Eigenvalue

Figure 2: Topological comparison of real and synthetic networks, trained on the ENGAGE dataset.

Average Degree Distribution Normalized Laplacian Spectrum
1000
Real Real

00 - Synthetic 1 Synthetic
g 3]
2 600 2
2 g
E 5,
g 400+ o 2+

200 1

04 T : T . 01— - : - . - : T "
0 2 4 o 8 000 025 050 075 100 125 150 LTS 200
Average Degree Eigenvalue

Figure 3: Topological comparison of real and synthetic networks, trained on the DINGO dataset.

are in the diversity and scale of training data (with DINGO revealing the limits of model coverage),
the expressiveness of the VGAE prior and decoders for large graphs, the sensitivity of generation
heuristics (since thresholds and retention rules significantly affect outputs), and the narrowness of
evaluation metrics (no power-flow feasibility assessment or operational constraints).

4 Conclusion

This study addresses a growing obstacle in machine learning research for power systems: access to
realistic distribution grid data. Since utilities are often reluctant to share feeder models due to security
and privacy concerns, synthetic network generation emerges as a promising alternative, offering
privacy-preserving, representative topologies on which new algorithms can be trained. Within this
context, we explore VGAEs as a generative framework for producing realistic distribution grids. We
evaluate four decoders across two contrasting datasets and our experiments reveal the reliance of
generative model structural fidelity on both architectural design and training data. While basic topo-
logical and spectral properties can be recovered on smaller, more homogeneous networks, the same
models struggle to reproduce the diversity and complexity of realistic large-scale feeders. Among the
architectures, the Iterative-GCN emerged as the most effective decoder, as its refinement mechanism
helps enforce sparsity and reduce unrealistic dense structures that appear in other approaches. Future
work will combine richer generative families (such as attention-based decoders, diffusion models,
or hierarchical approaches) with physics-aware constraints that embed operational feasibility such
as loading conditions and power flow convergence into the generation process. By enhancing data
generation methodologies to reflect the diversity of real-world feeders, we can accelerate research on
distributed energy resource integration and grid resilience, ultimately enabling data-driven solutions
that contribute directly to the decarbonization of power systems.

References

J. Amme, G. PleBmann, J. Biihler, L. Hiilk, E. Koetter, and P. Schwaegerl. The ego grid model: An
open-source and open-data based synthetic medium-voltage grid model for distribution power
supply systems. Journal of Physics: Conference Series, 977:012007, 02 2018. doi: 10.1088/
1742-6596/977/1/012007.

F. R. K. Chung. Spectral graph theory, volume no. 92 of Regional conference series in mathematics.
Published for the Conference Board of the mathematical sciences by the American Mathematical
Society, Providence R.1., 1997. ISBN 0821803158.

T. Joswig-Jones, K. Baker, and A. S. Zamzam. Opf-learn: An open-source framework for creating
representative ac optimal power flow datasets. In 2022 IEEE Power & Energy Society Innovative
Smart Grid Technologies Conference (ISGT), page 1-5, Apr. 2022. doi: 10.1109/ISGT50606.2022.
9817509. URL https://ieeexplore.ieee.org/abstract/document/9817509.

M. Khodayar and J. Wang. Deep generative graph learning for power grid synthesis. In 2027
International Conference on Smart Energy Systems and Technologies (SEST), pages 1-6, 2021.
doi: 10.1109/SEST50973.2021.9543363.

T. N. Kipf and M. Welling. Variational graph auto-encoders, 2016. URL http://arxiv.org/pdf/
1611.07308.

M. Liang, Y. Meng, J. Wang, D. L. Lubkeman, and N. Lu. Feedergan: Synthetic feeder generation
via deep graph adversarial nets. IEEE Transactions on Smart Grid, 12(2):1163-1173, 2021. ISSN
1949-3053. doi: 10.1109/TSG.2020.3025259.

S. Meinecke, D. Sarajli¢, S. R. Drauz, A. Klettke, L.-P. Lauven, C. Rehtanz, A. Moser, and M. Braun.
Simbench—a benchmark dataset of electric power systems to compare innovative solutions based
on power flow analysis. Energies, 13(12):3290, jun 2020. doi: https://doi.org/10.3390/en13123290.

M. H. Mohammadi and K. Saleh. Synthetic benchmarks for power systems. IEEE Access, 9:
162706-162730, 2021. doi: 10.1109/ACCESS.2021.3124477.

L. O’Bray, M. Horn, B. Rieck, and K. Borgwardt. Evaluation metrics for graph generative models:
Problems, pitfalls, and practical solutions. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=tBtoZYKd9n.

E. Okoyomon. Engage dataset: Evaluating network generalization for ac grid estimation, May 2025.
URL https://doi.org/10.5281/zenodo.15464235.

E. Okoyomon and C. Goebel. A framework for assessing the generalizability of gnn-based ac power
flow models. In Proceedings of the 16th ACM International Conference on Future and Sustainable
Energy Systems, E-Energy 25, page 476-488, New York, NY, USA, June 2025. Association
for Computing Machinery. ISBN 979-8-4007-1125-1. doi: 10.1145/3679240.3734610. URL
https://dl.acm.org/doi/10.1145/3679240.3734610.

G. A. Pagani and M. Aiello. The power grid as a complex network: A survey. Physica A: Statistical
Mechanics and its Applications, 392(11):2688-2700, 2013. ISSN 0378-4371. doi: https://doi.org/
10.1016/j.physa.2013.01.023. URL https://www.sciencedirect.com/science/article/
pii/S0378437113000575,

E. Schweitzer. Creating, Validating, and Using Synthetic Power Flow Cases: A Statistical Approach
to Power System Analysis. PhD thesis, Arizona State University, 2019.

Y. Zhu, Du Yuanqi, Y. Wang, Y. Xu, J. Zhang, Q. Liu, and S. Wu. A survey on deep graph generation:
Methods and applications. URL http://arxiv.org/pdf/2203.06714,

A Deep Graph Generation Models for Power Systems

A.1 FeederGAN Liang et al|(2021)

FeederGAN employs a Wasserstein Generative Adversarial Network (WGAN) for power grid gen-
eration. Unlike traditional GANs, WGANSs leverage the Wasserstein distance as a loss function,
which provides more stable gradients during training. In a GAN framework, two neural networks,
the generator and the discriminator, engage in a competitive process. The generator aims to produce
synthetic data that is indistinguishable from real data, while the discriminator seeks to differentiate
between real and synthetic data. In FeederGAN, this generator is a fully connected multi-layer
perceptron (MLP). To train its generator, FeederGAN adopts a device-as-node representation, where

https://ieeexplore.ieee.org/abstract/document/9817509
http://arxiv.org/pdf/1611.07308
http://arxiv.org/pdf/1611.07308
https://openreview.net/forum?id=tBtoZYKd9n
https://doi.org/10.5281/zenodo.15464235
https://dl.acm.org/doi/10.1145/3679240.3734610
https://www.sciencedirect.com/science/article/pii/S0378437113000575
https://www.sciencedirect.com/science/article/pii/S0378437113000575
http://arxiv.org/pdf/2203.06714

devices (e.g., transformers, lines) are modeled as nodes, but bus features are not included. While this
allows for simpler graph structures, it may result in the loss of critical node-level features (such as
bus features) that are essential for power flow analysis. FeederGAN faces significant issues related
to mode collapse, where the generator produces repetitive topologies or phase configurations. It is
also limited to generating only radial networks, making it unsuitable for more complex meshed grid
structures, and it achieves a low feasibility ratio of only 27% with respect to power flow constraints.
Furthermore, its reliance on a fully connected MLP restricts its ability to generate graphs with variable
sizes and limits its adaptability to larger grid topologies.

A.2 Deep Graph Distribution Learning (DeepGDL) Khodayar and Wang| (2021))

DeepGDL offers a more structured approach to power grid generation by utilizing a Recurrent Neural
Network (RNN), specifically a Gated Recurrent Unit (GRU), for graph generation. DeepGDL first
divides the power grid into subgraphs or communities using a modularity optimization algorithm.
Each community is then treated as a smaller subgraph, which is generated separately before being
reassembled into a complete grid. On a higher level, the algorithm works like this;

e Community Detection: The original grid is broken down into smaller, densely connected
subgraphs called communities.

* Node-by-Node Generation: For each community, node and edge features are generated
iteratively using the GRU. The process starts with a prior, and at each step, the GRU produces
a graph state .S;, which encodes information about the subgraph generated so far. This state
is used as input to two neural networks that generate node features and edge attributes.

* Grid Reconstruction: Once all nodes in a community are generated, the communities are
merged using graph-theoretic techniques to form a single power grid. This merging process
often relies on heuristics, which may introduce biases or suboptimal connections.

DeepGDL approach of generating subgraphs (communities) individually and combining them into
a complete grid provides modularity. However, this process is heavily dependent on the accuracy
of community detection, which is heuristic-based. Errors during community detection propagate
throughout the entire generation process, potentially affecting the overall grid structure. The use of a
RNN-based approach introduces scalability issues, as RNNs are known to struggle with larger graphs
due to vanishing gradient problems and increased computational complexity. Moreover, DeepGDL
validates the generated grids using graph-theoretic metrics like clustering coefficients and degree
distributions, but it does not explicitly guarantee power flow feasibility.

B Dataset Characteristics Analysis

Fig. d]illustrates the graph characteristics of the two datasets used to train the models. The models
were trained on these datasets separately to evaluate how different data distributions affect model
performance and generalization capabilities.

A notable distinction between the datasets is the significant difference in the number of nodes per
graph. This disparity arises from the fundamentally different objectives and methodologies in their
creation. DINGO aims to create realistic, high-resolution synthetic medium voltage grids covering all
of Germany Amme et al.| (2018). The resulting dataset contains 2,722 MVGDs|Amme et al.|(2018)),
where each Medium Voltage Grid District (MVGD) typically represents a district supplied by a single
HV-MYV substation. This focus on comprehensive spatial representation necessitates the generation
of numerous districts, each with a detailed network structure and consequently a higher number of
nodes to capture local infrastructure characteristics.

The ENGAGE dataset was developed to evaluate model generalization and promote research in robust
grid planning and operation Okoyomon and Goebel| (2025)). It has 3000 test cases, created using a
statistical sampling approach of the 10 distribution grid cases provided by SimBench Meinecke et al.
(2020). The SimBench distribution grids were designed to model German distribution networks at
different voltage levels, with radial grids present in the low voltage level and ring structures in the
medium voltage networks. The LV grids were derived using a clustering approach and data from
official statistics published by the German federal statistical office (DESTATIS) and OpenStreetMap.
The MV grids were generated manually rather than algorithmically, with emphasis on creating a

Node Distribution DINGO Characteristics Edge Distribution

200 200

150 150
100 100 -

50 504

T u T T 0- T u T T
0 5000 10000 15000 20000 25000 30000 35000 40000] 10000 20000 30000 40000 50000 60000 70000 S0000

ENGAGE Characteristics
600 600

‘ | | ‘l ‘ || |
T T T T T T 0-
20 40 60 80 100

y
120 140 50 100 150 200 2350 300
Number of Nodes Number of Edges

400

201

=]
L

=

Figure 4: Dataset characteristics comparison between DINGO and ENGAGE datasets. The DINGO
dataset exhibits a wide distribution of network sizes with up to 40,000 nodes per grid, while ENGAGE
shows discrete clustering around specific node counts, reflecting its origins as a manually created
benchmark dataset.

limited number of representative MV grid classes (rural, semi-urban, urban, and commercial). This
approach results in fewer but well-characterized network topologies with a more manageable number
of nodes per graph.

This inherent difference in dataset characteristics — DINGO’s large-scale, spatially comprehensive
representation versus ENGAGE’s focused benchmark approach — presents an interesting opportunity
to evaluate deep graph generative models’ scalability and generalization capabilities across varying
network sizes and complexities.

C Architecture Overview

C.1 Encoder Architecture

The encoder’s primary function is to transform the input graph into a latent representation that can
be processed by a decoder, which subsequently learns to reconstruct a topologically similar graph.
The architecture employed in this research is illustrated in Fig. [5] The input graph is processed
through a GCN layer, followed by a layer normalization step to stabilize the learning process. A
ReLU activation function is applied to mitigate overfitting, complemented by a dropout layer with a
rate of 0.2.

The encoder produces two tensors as output: one representing the mean (u) of the distribution and
another representing the logarithm of the variance (log o%). The dimensionality of the latent space is
a critical hyperparameter that balances representational capacity with computational efficiency. Based
on empirical evaluations, a latent dimension of 16 was selected for the ENGAGE dataset. In contrast,
a higher dimension of 64 was employed for the more complex DINGO dataset to accommodate its
greater topological diversity.

C.2 Decoder Architectures

Four distinct decoder architectures are implemented and compared in this study, each offering
different approaches to reconstructing graph structures from latent representations:

GCN Encoder
GCNConv / i /
Layer
Node GCNConv Normalization Activation Dropout
Features, Layer Layer Function Layer
GCNConv /
Layer logvar /

MLP Decoder

Iterative Layer Process

Latent
Vector
Z

Concat Z_i
and Z_j

Activation Dropout

IFE ey Function Layer

Sigmoid

Figure 5: Architecture of the encoder and MLP decoder. The encoder transforms the input graph into
a latent representation through GCN layers, normalization, and regularization. The MLP decoder
processes concatenated node embeddings through fully connected layers to predict edge probabilities.

C.2.1 Inner Product Decoder

The inner product decoder serves as the default implementation in PyTorch Geometric and was
initially presented in the seminal work by Kipf and Welling |Kipf and Welling| (2016). After obtaining
the latent variable Z, the objective is to determine the similarity between each row in the latent space
(where each row corresponds to a vertex) to generate the reconstructed adjacency matrix.

The inner product computes the cosine similarity between vectors, providing a distance measure that
is invariant to vector magnitude. Consequently, by calculating the inner product between Z and its
transpose Z ', the similarity between nodes in the latent space can be learned to predict the adjacency
matrix. The edge probabilities A;; between nodes 4 and j are computed as:

Aij = O'(Z;;TZ]') (1)
Where o is the sigmoid activation function, ensuring the output is bounded between 0 and 1, repre-
senting a probability. While computationally efficient, this decoder assumes that edge formation is
determined solely by the dot product of node embeddings, which may not fully capture the complex
interdependencies present in power distribution networks.

C.2.2 MLP Decoder

The MLP decoder presents a more sophisticated approach than the inner product decoder, though it
employs a similar underlying principle. It evaluates the potential existence of an edge between two
nodes by concatenating their respective latent representations and processing this combined vector
through multiple fully connected layers.

The architecture of the MLP decoder is illustrated in Fig. [5]and can be expressed mathematically as:

Aij = o(fmee([2i | 25])) (2)

Where [z; || z;] represents the concatenation of the latent vectors for nodes ¢ and j, and furp
denotes the MLP function. A sigmoid activation function is applied to the final layer to predict edge
probabilities. ReLU activation functions and dropout layers are incorporated between hidden layers
as regularization mechanisms.

The network depth, controlled by the number of fully connected layers, functions as a hyperparameter
and depends on the length of the hidden dimension list. The hidden dimension list specifies the
dimensionality of each hidden layer.

C.2.3 GCN Decoder

This decoder leverages the representational capacity of graph convolutions to predict edge proba-
bilities between node pairs, as illustrated in Fig. [6] Initially, the latent vector is projected into a
higher-dimensional space using a linear transformation, followed by normalization, ReLU activation,
and dropout operations. Subsequently, this representation is processed through one or more GCN
layers.

The GCN decoder can be mathematically represented as:

A=0(foen(Z, A)))

Where Z is the latent representation, A is an initial edge index (typically randomly generated during
the generation phase), and fgcn represents the graph convolutional function. The number of graph
convolution layers is contingent on the complexity of the data.

C.2.4 [Iterative GCN Decoder

The iterative GCN decoder represents an enhancement of the standard GCN decoder architecture. It
introduces three additional hyperparameters specifically for the graph generation phase to address
a fundamental challenge in graph generation: standard GCN decoders utilize randomly generated
initial edges, which complicates accurate edge probability prediction between nodes and frequently
results in excessively dense generated graphs.

The iterative GCN decoder employs the following approach:
1. Initial sparse random edge generation using a sparsity constant (typically set between 0.05
and 0.15)
2. Processing of the latent representation through GCN layers as in the standard GCN decoder

3. Iterative refinement of edge probabilities through the following process:
For each iteration (the number of iterations being a hyperparameter, typically set to 2):
 Retain only the top x edge probabilities (where x is determined by the edge retention ratio
hyperparameter, typically between 0.01 and 0.1)

* Discard the remaining edges

* Add a small number of random edges for regularization (controlled by the exploration edge
density hyperparameter, typically between 0.01 and 0.1)

* Refine the edge probabilities by passing through a fully connected layer

Additionally, an external threshold hyperparameter (not directly part of the model architecture but
used during graph generation) determines the cut-off probability for the existence of an edge in the
final generated graph. The DINGO dataset typically requires a higher threshold (approximately 0.85)
compared to ENGAGE (approximately 0.73), indicating the increased difficulty in creating accurate
large-scale graph representations.

The configuration of the best-performing Iterative-GCN decoder for each dataset is presented in Table

2

Table 2: Training configurations for the best performing Iterative-GCN Decoders

Dataset Encoder Layers | Decoder Layers | Epochs | 5 Weight
DINGO [128, 64] [128, 64, 32] 25 2.0
ENGAGE [64, 16] [64, 32] 10 5.0

Projection to Higher Dimension

‘ This refinement loop is skipped during the training
Activati Dropout phase and is only applied during graph generation
finetony | NEVer phase of Iterative GCNDecoder:

FC Layer Normalizati .‘

« Retain the top x predicted edge probabilities.
] « Introduce random edges to enhance regularization.

Projected
Z
Iterative Layer Process

GCNConv
Layer

Activation®l [S8h o0 Cut FC Layer Sigmoid Refinement Edge

| Normalization Function Loop Probability

Figure 6: Architecture of the GCN and iterative GCN decoder. The refinement loop, exclusive to
the iterative GCN decoder, enhances its graph generation capabilities. The latent representation
is processed through projection, normalization, and GCN layers to generate edge probabilities by
learning the relationships between nodes in the latent space.

C.3 Graph Generation Process

The practical implementation of graph generation with the VGAE framework requires several modifi-
cations from the standard approach. This is particularly necessary because the model expects initial
edge indices during the generation phase, and random generation without appropriate constraints
produces excessively dense graphs that do not resemble realistic power distribution networks. To
address this challenge, several hyperparameters were introduced to control the generation process:

* Initial edge density: This parameter establishes the threshold for the edge indices passed to
the GCN within the decoder. A higher value produces denser graphs, while a lower value
creates more sparse structures. As distribution networks are inherently sparse, empirical
testing determined that values between 0.05 and 0.15 yield optimal results, with 0.125
selected as the standard configuration.

* Edge retention ratio: Utilized specifically in the refinement loop of the iterative GCN
decoder, this hyperparameter determines the proportion of predicted edges to retain in each
iteration. It effectively selects the top x values from the predicted edge probabilities, with
optimal values typically ranging between 0.01 and 0.1, depending on dataset characteristics.

» Exploration edge density: Also employed in the refinement loop, this hyperparameter
functions as a regularizer by introducing random edges to the predicted edge set. This
mechanism helps prevent overfitting to local graph structures and promotes diversity in the
generated topologies. Empirical testing revealed optimal values between 0.01 and 0.1.

* Threshold: Implemented as a post-processing step rather than within the model architecture,
this parameter provides an additional layer of control over the final graph structure. Predicted
edge probabilities must exceed this threshold to be retained in the final graph. The DINGO
dataset typically requires a higher threshold (approximately 0.85) compared to ENGAGE
(approximately 0.73), reflecting the increased complexity of accurately representing larger
network structures.

Through careful tuning of these hyperparameters, the VGAE framework can successfully generate
synthetic distribution networks that maintain the crucial topological characteristics of real power
grids while providing sufficient diversity for comprehensive benchmarking of distribution network
algorithms.

10

D Loss Funtion

The loss function of a VAE can be formulated as:

L(0,03xD) = —D1.(q,(2xD) || po(2)) + Eq (21x0) logp"(x(i)'Z)] :)

The first term is the KL divergence, which quantifies the dissimilarity between two probability
distributions. In the context of VAEs, it measures how closely the approximate posterior distribution
matches the prior distribution, typically chosen to be Gaussian. This term acts as a regularizer,
preventing the encoder from overfitting to the observed data x(). The second term represents the
reconstruction loss, which evaluates how accurately the model can reconstruct the input data from
its latent representation. This paper, Kipf and Welling (2016)), discusses how to go from a VAE to
VGAE.

The loss curves of the Iterative-GCN are trained on the DINGO and ENGAGE datasets and are
presented in Figures[I|and[7] respectively.

s Decoder: Inner Product 2o Decoder: MLP 2o Decoder: GCN 2o Decoder: Iterative GCN
2 41\ 154 159 159
=}
— 3 ¥ ¥
= 1.0 1 1.01 1.0 1
S 2
3
& 0.5 9 0.5 9 0.5 9
0 - T T 0.0 *= T T 0.0+ T T 0.0 =
0 5 10 0 5 10 0 5 10 0 5 10
20 20 20 2.0
1.5 1.51 1.5 1.5
2
=]
= 1.0 1.0 1.0 1.0
=
-
0.5 05 0.5 0.5
0.0 1 : . 0.0 L : - 0.0 L - . 0.0 L

0 5 10 0 5 10 0 5 10 0 5 10
Epochs Epochs Epochs Epochs

Figure 7: Training loss curves for the four decoder architectures on the ENGAGE dataset.

D.1 Loss Function of VGAE

The general loss formulation of a VAE (Eq. (@) provides the foundation for extending the framework
to graph-structured data. In the VGAE setting, this principle is adapted by reconstructing the
adjacency matrix of the graph while simultaneously regularizing the latent space. The resulting
training objective (Eq. (3)) combines a reconstruction loss with a KL divergence term, where a
scaling factor (3 allows tuning the trade-off between reconstruction fidelity and latent space regularity.

L= Lreconstmction + 6 : LKL (5)

Through empirical analysis, it was determined that more complex decoder architectures (GCN and
Iterative-GCN) require stronger regularization, with an optimal 3 value of 2 for DINGO and 5 for
ENGAGE, while simpler decoders (Inner Product and MLP) performed better with 5 = 1.

E Training Protocol and Evaluation Metrics

All models were trained using the Adam optimizer with a learning rate of 0.001. Due to its smaller
size and lower complexity, the ENGAGE dataset required fewer training epochs (typically 10-25),
whereas the DINGO dataset needed 25-50 epochs to achieve satisfactory results. A batch size of 32
was used for all models, except for the DINGO dataset when employing complex architectures such
as GCN and Iterative-GCN, as these required higher computational power and increased memory
usage.

11

E.1 Evaluation Metrics

To quantitatively assess the quality of the generated synthetic networks, two primary graph-theoretic
metrics were employed:

E.1.1 Average Degree

The average degree of a graph provides a fundamental measure of network connectivity and represents
the average number of connections per node in the network. For an undirected graph G = (V, E)
with |V| nodes and | E'| edges, the average degree d is calculated as:

_ 2|E|
d=— 6
V] ©

In the context of power distribution networks, average degree carries particular significance as it
reflects the redundancy and robustness of the electrical infrastructure. Distribution networks typically
maintain relatively low average degrees (between 2 and 3 [Pagani and Aiello| (2013)) due to their
predominantly radial or weakly-meshed topologies, which are designed to balance reliability with
economic constraints. Significant deviations in average degree between real and synthetic networks
would indicate fundamental structural dissimilarities that could affect the operational characteristics
of the modeled system, including fault propagation, power flow patterns, and system restoration
capabilities.

The average degree is computationally efficient and intuitively interpretable. However, it provides
only limited insight into the global structural properties of the network, necessitating complementary
metrics that capture more complex topological structure.

E.1.2 Normalized Laplacian Spectrum

The normalized Laplacian spectrum provides a sophisticated characterization of a graph’s global
structure by encoding information about connectivity patterns, clustering tendencies, and community
structures. For a graph G, the normalized Laplacian matrix £ is defined as:

1 ifi=jandd; #0
Lij=1~ dlidj if 7 and j are adjacent 7
0 otherwise

where d; is the degree of node 4. The eigenvalues of £ form the normalized Laplacian spectrum, which
ranges between 0 and 2, with the multiplicity of eigenvalue 0 indicating the number of connected
components in the graph. |Chung|(1997)

The similarity between the spectra of two graphs can be quantified using some distance metric, like
the Wasserstein distance between their eigenvalue distributions. This approach objectively assesses
how well a generative model captures the structural properties of reference power grids beyond simple
connectivity metrics.

Together, average degree and normalized Laplacian spectrum provide complementary perspectives;
the former captures local connectivity patterns while the latter reflects global structural properties.
This combination of metrics enables a comprehensive evaluation of how faithfully the proposed
deep graph generation methods reproduce the essential topological characteristics of real distribution
networks.

These metrics were selected based on their demonstrated ability to capture essential structural
characteristics of power distribution networks while remaining computationally tractable for the large
number of networks analyzed in this study. We elect not to use the clustering coefficient, a commonly
used graph descriptor, as this tends to converge to zero for radial distribution feeders due to limited
clustering groups [Schweitzer| (2019).

12

	Introduction
	Methodology
	Results and Discussion
	Conclusion
	Deep Graph Generation Models for Power Systems
	FeederGAN Liang.2021
	Deep Graph Distribution Learning (DeepGDL) 9543363

	Dataset Characteristics Analysis
	Architecture Overview
	Encoder Architecture
	Decoder Architectures
	Inner Product Decoder
	MLP Decoder
	GCN Decoder
	Iterative GCN Decoder

	Graph Generation Process

	Loss Funtion
	Loss Function of VGAE

	Training Protocol and Evaluation Metrics
	Evaluation Metrics
	Average Degree
	Normalized Laplacian Spectrum

