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Antar

Antarctica is  about 1.5× the size of the US &
the largest potential contributor to sea level rise



iIce thickness 
models
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animation by Stef Lhermitte

ice sheet models

→	sea level rise

93% of 500 m grid cells 
rely on interpolation. 
[Pritchard et al. 2025]

data limitations



Interpolations require Mass Conservation (MC)
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→	Ice sheet models require ice thickness initialisations to respect mass conservation.

Ice Sheet 
Model

Ice Sheet 
Model

interpolation with flux 
divergences

blue = spurious sources
red = spurious sinks

divergence-free 
flux interpolation

inflow = outflow    
at any point

sea level rise 
projections that 
reliably inform      
climate action

see Seroussi et al. 2011,
Morlighem et al. 2011,

and Nias et al. 2018.

Flux: ice mass transport rate

2D flux 𝒗 = ice thickness ℎ	× ice velocity s



FEM ice flux Mass Conservation
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• Finite Element Method (FEM) Mass Conservation introduced by Morlighem et al. 2011

• Applied to fast-flowing regions of Antarctica in BedMachine Antarctica (Morlighem et al. 2020)

• Finite Element Method (FEM) drawbacks:

• high computational cost

• depends on fixed mesh/grid

• integration of new measurements may be tricky

Can we use Machine Learning 
for mass conservation?



Physics-Informed Machine Learning (ML)
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2. Learning bias 3. Inductive bias1. Observational bias

soft-constrained models hard-constrained modelsunconstrained models

additional physics violation 
loss term promotes physics

model or kernel architectures 
enforce physics exactly

learn from observations that 
embody physics

Implied in any ML model but 
observation are very limited

Mass Conservation PINNs 
Teisberg et al. 2021 and  
Steidl et al. 2025
- no physical guarantees
- generalisation issues
- convergence issues
- spectral bias

Our work

- exact physical guarantees
- better generalisation
- better convergence
- less spectral bias

after Karniadakis et al. 2021



Divergence-free ice flux
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sparse ice height point data  ℎ  from airborne dense surface velocity vectors 𝒔 from  satellites 

ice height ℎ surface velocity 𝒔
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 ice flux 𝒗
𝒗 = 	ℎ	 ' 	 𝒔

∇ ' 𝒗 = 0

from MEaSUREs 
InSAR velocity map 
(Rignot et al. 2017)

from the Bedmap3 
(Fremand et al. 2023)

𝜕ℎ
𝜕𝑡
+ ∇ ! 𝒗	 = smb	 − bmb

Remove negligible terms from the mass 
continuity equation (as in Teisberg et al. 2021)

Ice flux describes 
the transport of ice 
mass/volume per 
unit time for any 
point in 2D space. →	Enforce MC as divergence-free constraint



A fluid dynamics trick
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→	The symplectic gradient of the stream function is always divergence-free.



Exact Mass Conservation with divergence-free NNs
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Based on

- Model Inclusive Learning                  
[Kuroe et al. 1998]

- Hamiltonian Neural Networks (HNNs) 
[Greydanus et al. 2019]

- Neural Conservation Laws (NCLs) 
[Richter-Powell et al. 2022]

→	No glaciology applications yet.

→	No comprehensive comparison.



Mass Conservation on Rails
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+ aux

+ dir



Experiments
200 × 200 km region over Byrd Glacier,  
Antarctica, divided into train and test.

9 models:

- dfNN (hard-constrained) (proposed)
+ dir (directional guidance training step) (proposed)
+ aux (auxiliary input: surface elevation)

- PINN (soft-constrained)
+ dir (proposed)
+ aux

- NN (unconstrained)
+ dir (proposed)
+ aux
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Results on test

→ Hard-constraining yields higher accuracy reconstructions and better physical adherence. 

→	Additional directional guidance training boosts all models.

→ Adding auxiliary surface predictors did not help.

MAD: Mean Absolute Divergence
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Visual comparison of predictions

→ spectral bias
*showing small 25 x 25 km subregion
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Our findings suggest that hard-constrained PIML models are preferrable, especially 
when data is sparse & noisy.

Future work may apply dfNNs to other environmental flows (e.g. ocean, groundwater, 
atmosphere) and extend dfNNs to higher dimensions.

Fully reproducible experiments on GitHub

- dfNN implementation in PyTorch 

- Leverage autodiff in forward pass

- SiLU activation function improves convergence

Also find the workshop paper on arXiv
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dfNNs
• Physical guarantees ✔
• End-to-end model ✔
• Meshless ✔ 
• Fast ✔ 

Summary – Mass Conservation on Rails

https://github.com/kimbente/mass_conservation_on_rails
https://arxiv.org/abs/2510.06286


Ongoing work
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We use a Dissipative Hamiltonian Neural Network 
(DHNN, Sosanya et al. 2022) to estimate basal melt 
over Ross ice shelf via vector field decomposition.

DHNNs for ice shelf basal melt estimationProbabilistic model variant: dfNGPs 

Integration of dfNNs with divergence-free Gaussian 
Processes (dfGPs) into dfNGPs (divergence-free Neural 
Gaussian Processes) for Uncertainty Quantification.



Join ML4Cryo (Machine Learning for the Cryosphere)
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Julia Kaltenborn

Andrew McDonald

Kim Bente 

ML4Cryo

A global research community, 
bridging the gap between machine 
learning and cryospheric science.

slack community

sessions at EGU 
                       and similar

… review paper in the 
making

contributions to
                       reports & blogs
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