

NeurIPS 2025 workshop – Tackling Climate Change with Machine Learning



Mass Conservation on Rails — Rethinking Physics-Informed Learning of Ice Flow Vector Fields

Kim Bente

School of Computer Science, The University of Sydney

Roman Marchant

Human Technology Institute,
University of Technology Sydney

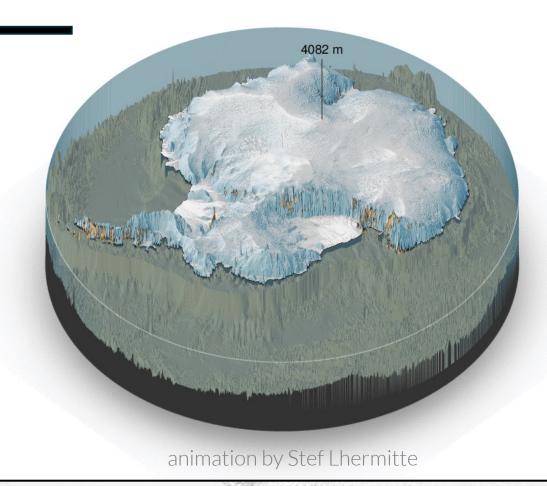
Fabio Ramos

NVIDIA
School of Computer Science,
The University of Sydney

Antarctica is about 1.5× the size of the US & the largest potential contributor to sea level rise



Ice thickness models



data limitations

93% of 500 m grid cells rely on interpolation. [Pritchard et al. 2025]

Interpolations require Mass Conservation (MC)

Flux: ice mass transport rate 2D flux v = ice thickness $h \times ice$ velocity s

interpolation with flux Ice Sheet see Seroussi et al. 2011, divergences Morlighem et al. 2011, Model blue = spurious sources and Nias et al. 2018. red = spurious sinks divergence-free sea level rise Ice Sheet flux interpolation projections that Model inflow = outflow reliably inform at any point climate action

→ Ice sheet models require ice thickness initialisations to respect mass conservation.

FEM ice flux Mass Conservation

- Finite Element Method (FEM) Mass Conservation introduced by Morlighem et al. 2011
- Applied to fast-flowing regions of Antarctica in BedMachine Antarctica (Morlighem et al. 2020)
 - Finite Element Method (FEM) drawbacks:
 - high computational cost
 - depends on fixed mesh/grid
 - integration of new measurements may be tricky

Can we use Machine Learning for mass conservation?

Physics-Informed Machine Learning (ML)

1. Observational bias

2. Learning bias

3. Inductive bias

unconstrained models

soft-constrained models

hard-constrained models

learn from observations that embody physics

additional physics violation loss term promotes physics

model or kernel architectures enforce physics exactly

Implied in any ML model but observation are very limited

Mass Conservation PINNs Teisberg et al. 2021 and Steidl et al. 2025

- no physical guarantees
- generalisation issues
- convergence issues
- spectral bias

Our work

- exact physical guarantees
- better generalisation
- better convergence
- · less spectral bias

after Karniadakis et al. 2021

(1) background

(2) mode

(3) experiments

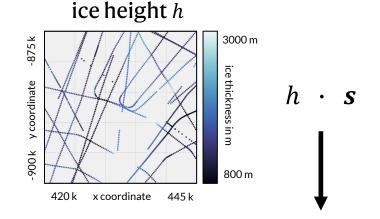
(4) outlook

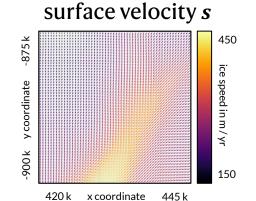
Divergence-free ice flux

sparse ice **height** point data h from airborne

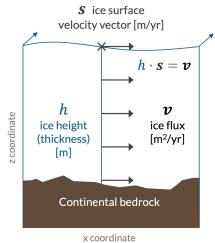
dense **surface velocity** vectors **s** from satellites

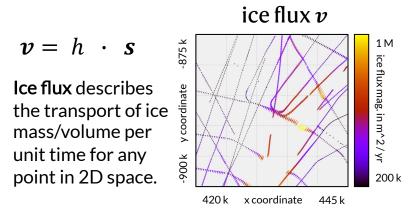
from the Bedmap3 (Fremand et al. 2023)





from MEaSUREs InSAR velocity map (Rignot et al. 2017)





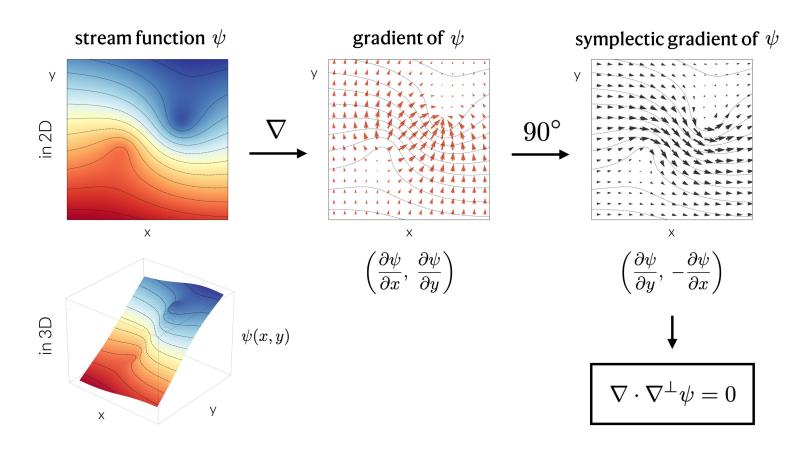
Remove negligible terms from the mass continuity equation (as in Teisberg et al. 2021)

$$\frac{\partial h}{\partial t} + \nabla \cdot \boldsymbol{v} = \text{smb } - \text{bmb}$$

$$\nabla \cdot \boldsymbol{v} = 0$$

→ Enforce MC as divergence-free constraint

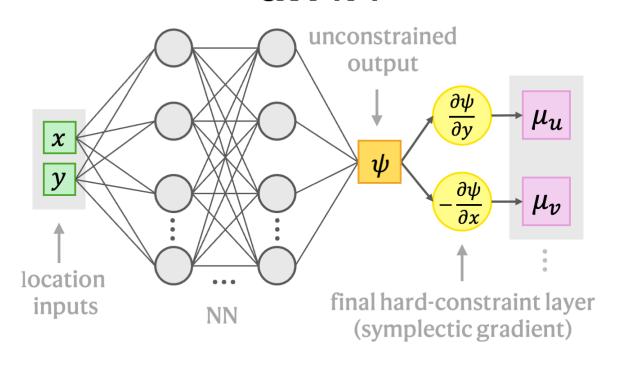
A fluid dynamics trick



→ The symplectic gradient of the stream function is always divergence-free.

Exact Mass Conservation with divergence-free NNs

dfNN

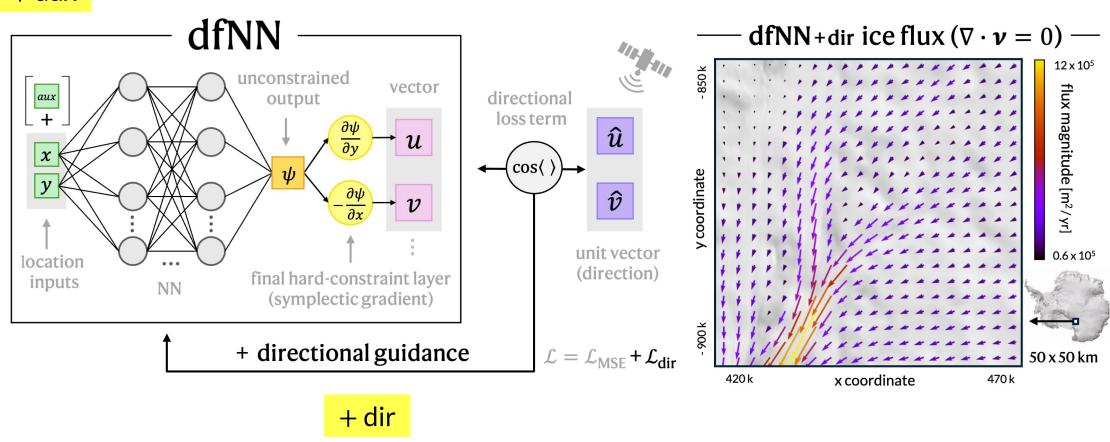


Based on

- Model Inclusive Learning [Kuroe et al. 1998]
- Hamiltonian Neural Networks (HNNs) [Greydanus et al. 2019]
- Neural Conservation Laws (NCLs) [Richter-Powell et al. 2022]
 - → No glaciology applications yet.
 - → No comprehensive comparison.

Mass Conservation on Rails

+ aux

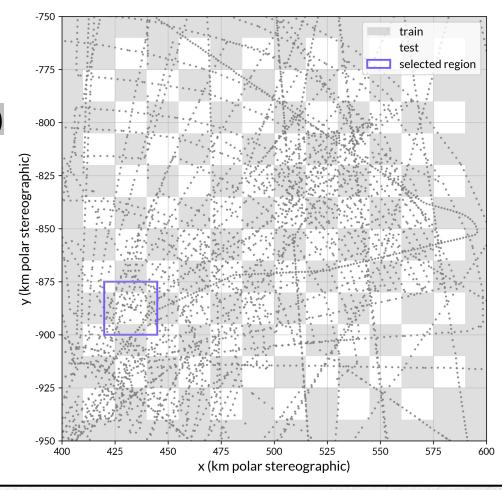


Experiments

9 models:

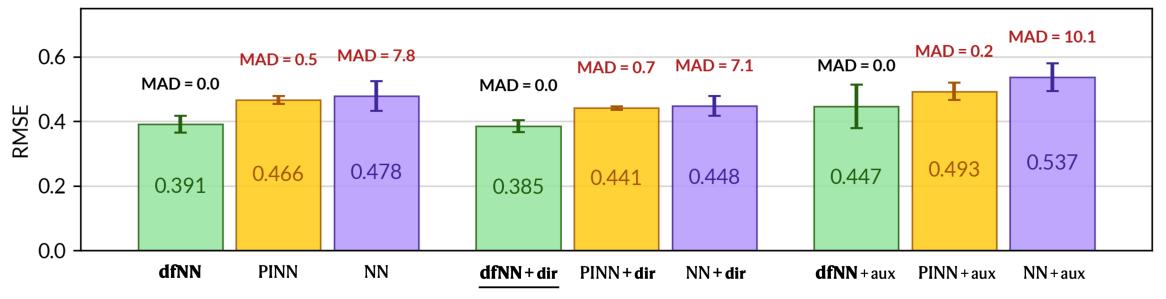
- dfNN (hard-constrained) (proposed)
 - + dir (directional guidance training step) (proposed)
 - + aux (auxiliary input: surface elevation)
- PINN (soft-constrained)
 - + dir (proposed)
 - + aux
- NN (unconstrained)
 - + dir (proposed)
 - +aux

 200×200 km region over Byrd Glacier, Antarctica, divided into train and test.



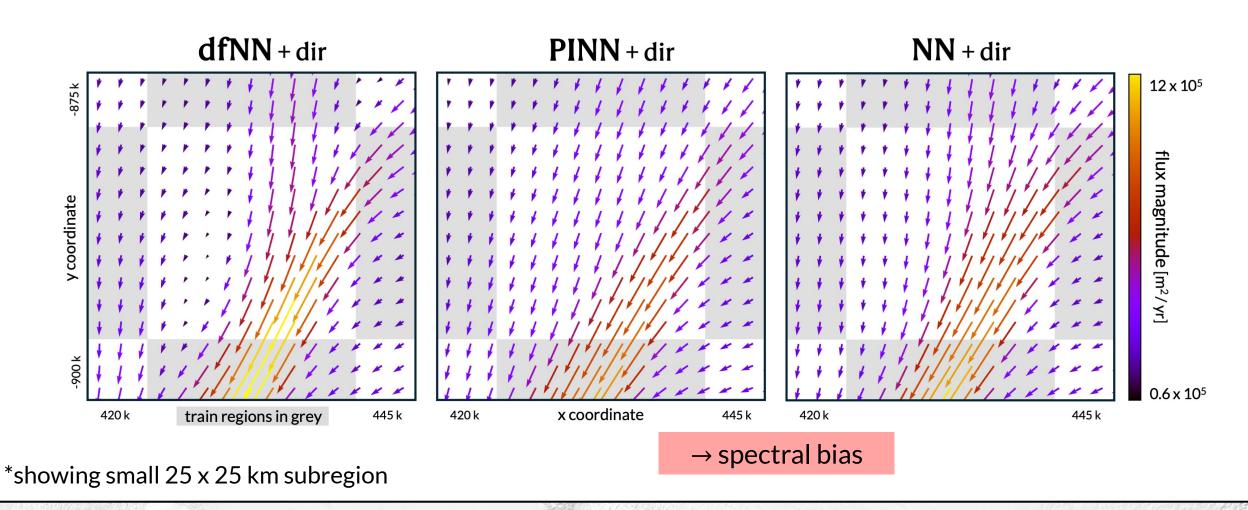
Results on test

MAD: Mean Absolute Divergence



- → **Hard-constraining** yields higher accuracy reconstructions and better physical adherence.
- → Additional **directional guidance** training boosts all models.
- → Adding auxiliary surface predictors did not help.

Visual comparison of predictions



(1) background

(2) model

(3) experiments

(4) outlook

Summary – Mass Conservation on Rails

Our findings suggest that hard-constrained PIML models are preferrable, especially when data is sparse & noisy.

Future work may **apply dfNNs to other environmental flows** (e.g. ocean, groundwater, atmosphere) and extend dfNNs to higher dimensions.

Fully reproducible experiments on GitHub

- dfNN implementation in PyTorch
- Leverage autodiff in forward pass
- SiLU activation function improves convergence

Also find the workshop paper on <u>arXiv</u>

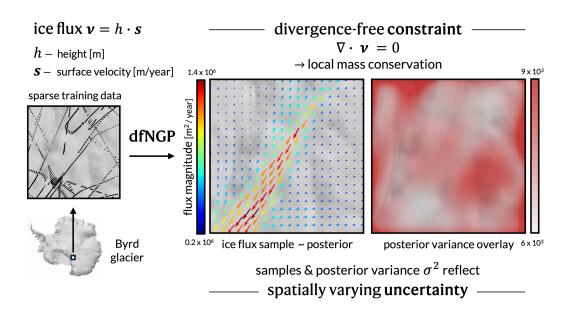
dfNNs

- Physical guarantees
- End-to-end model \checkmark
- Meshless
- Fast √

Ongoing work

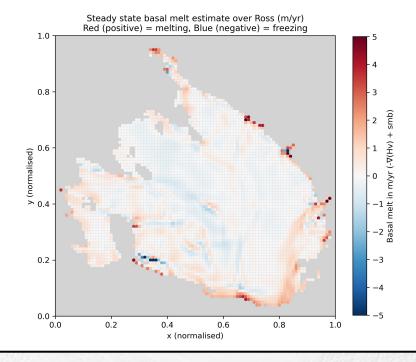
Probabilistic model variant: dfNGPs

Integration of dfNNs with divergence-free Gaussian Processes (dfGPs) into dfNGPs (divergence-free Neural Gaussian Processes) for **Uncertainty Quantification**.



DHNNs for ice shelf basal melt estimation

We use a Dissipative Hamiltonian Neural Network (DHNN, Sosanya et al. 2022) to estimate basal melt over Ross ice shelf via **vector field decomposition**.



Join ML4Cryo (Machine Learning for the Cryosphere)

Julia Kaltenborn

Mila

McGill

Andrew McDonald

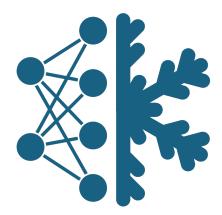
UNIVERSITY OF
CAMBRIDGE

British
Antarctic Survey
Antarctic Survey
Antarctic Survey

THE UNIVERSITY OF SYDNEY

Kim Bente

ML4Cryo



A global research community, bridging the gap between machine learning and cryospheric science.

... review paper in the making

References I

Pritchard, Hamish D., Peter T. Fretwell, Alice C. Fremand, Julien A. Bodart, James D. Kirkham, Alan Aitken, Jonathan Bamber et al. "Bedmap3 updated ice bed, surface and thickness gridded datasets for Antarctica." Scientific data 12, no. 1 (2025): 414.

Seroussi, Hélène, Mathieu Morlighem, E. Rignot, Eric Larour, Denis Aubry, H. Ben Dhia, and Steen Savstrup Kristensen. "Ice flux divergence anomalies on 79north Glacier, Greenland." Geophysical Research Letters 38, no. 9 (2011).

Morlighem, Mathieu, E. Rignot, Hélene Seroussi, Eric Larour, H. Ben Dhia, and Denis Aubry. "A mass conservation approach for mapping glacier ice thickness." Geophysical Research Letters 38, no. 19 (2011).

Nias, I. J., S. L. Cornford, and A. J. Payne. "New mass-conserving bedrock topography for Pine Island Glacier impacts simulated decadal rates of mass loss." Geophysical Research Letters 45, no. 7 (2018): 3173-3181.

Morlighem, Mathieu, Eric Rignot, Tobias Binder, Donald Blankenship, Reinhard Drews, Graeme Eagles, Olaf Eisen et al. "Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet." Nature geoscience 13, no. 2 (2020): 132-137.

Frémand, Alice C., Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell et al. "Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data." Earth System Science Data 15, no. 7 (2023): 2695-2710.

Rignot, E., Mouginot, J. & Scheuchl, B. (2017). MEaSUREs InSAR-Based Antarctica Ice Velocity Map. (NSIDC-0484, Version 2). [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.

References II

Karniadakis, George Em, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. "Physics-informed machine learning." Nature Reviews Physics 3, no. 6 (2021): 422-440.

Teisberg, Thomas O., Dustin M. Schroeder, and Emma J. MacKie. "A machine learning approach to mass-conserving ice thickness interpolation." In 2021 IEEE international geoscience and remote sensing symposium IGARSS, pp. 8664-8667. IEEE, 2021

Steidl, Viola, Jonathan Louis Bamber, and Xiao Xiang Zhu. "Physics-aware machine learning for glacier ice thickness estimation: a case study for Svalbard." The Cryosphere 19, no. 2 (2025): 645-661.

Y. Kuroe, M. Mitsui, H. Kawakami, and T. Mori. A learning method for vector field approximation by neural networks. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (1998)

Greydanus, Samuel, Misko Dzamba, and Jason Yosinski. "Hamiltonian neural networks." Advances in neural information processing systems 32 (2019).

Richter-Powell, Jack, Yaron Lipman, and Ricky TQ Chen. "Neural conservation laws: A divergence-free perspective." Advances in Neural Information Processing Systems 35 (2022): 38075-38088.

Send me an email kim.bente@sydney.edu.au

Acknowledgements

This research was supported by the Australian Government through the Australian Research Council's Industrial Transformation Training Centre in Data Analytics for Resources and Environments (DARE) (project IC190100031). Furthermore, this research was supported by an Australian Government Research Training Program (RTP) Scholarship.

