
- To reliably project sea level rise, ice sheet models require physically plausible                  
and skilful interpolations of ice flow from sparse & noisy measurements.

- Mass Conservation can be achieved by imposing a divergence-free constraint on ice 
flux vector fields ( ∇	 # 	𝝂	 = 	0	), where flux is the ice mass transport rate.

- Existing Physics-Informed ML approaches only use soft-constrained PINNs, which 
can’t guarantee physics and often suffer from spectral bias and convergence issues.

- We propose hard-constrained dfNNs (divergence-free Neural Networks), which 
guarantee Mass Conservation, as well as a directional guidance learning strategy 
that leverages dense satellite data.

- Reconstruction experiments on real Antarctic ice flux data highlight the physics & 
accuracy benefits of using hard-constrained dfNNs over soft-constrained PINNs or 
unconstrained NNs.
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Problem
Climate projection models rely on inputs that adhere to fundamental physical principles:

The divergence-free Neural Network (dfNN)
Based on hard-constrained methods introduced in

- Model Inclusive Learning  [Kuroe et al. 1998] – early work proposed for learning vector field decompositions.

- Hamiltonian Neural Networks (HNNs) [Greydanus et al. 2019] – initially developed for energy conservation.

- Neural Conservation Laws [Richter-Powell et al. 2022] – generalisation for solving the continuity equation.
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Real Antarctic Data

Physics-Informed Machine Learning (PIML)
Three PIML strategies after Karniadakis et al. 2021 

Experiments over Byrd Glacier

A fluid dynamics trick  −	parametrising  𝜓 Results
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e.g. NNs e.g. PINNs →	 e.g. dfNNs  (proposed)

→  Numerical ice sheet models require ice flux initialisations to respect Mass Conservation (MC).

see Seroussi et al. 2011,
Morlighem et al. 2011,

and Nias et al. 2018.

ℎ	 # 	 𝒔

→  By parametrising a stream function 𝜓 we can model guaranteed divergence-free vector fields. 

For the paper, the dfNN implementation in PyTorch, fully 
reproducible experiments, and full references scan

→  Local Mass Conservation can be enforced via a divergence-free constraint.

Ongoing and future work
✓ Preprint now available: Probabilistic model variant (dfNGP) incorporating the 

dfNN into a divergence-free Gaussian Process to quantify spatially varying 
uncertainty.

q Applications to other environmental flows such as of ground water, wind, ocean 
currents, pollutants, or the atmosphere.

q Extension to higher dimensions and spatio-temporal solutions to the continuity 
equation (building on Richter-Powell et al. 2022) 
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Implicit strategy, but 
observations of ice flux are 

limited and noisy.

Teisberg et al. 2021 & Steidl 
et al. 2025 propose PINNs for 
ice flux. Generally, PINNs lack 

guarantees, and can incur 
convergence issues and 

spectral bias.

No glaciology applications yet.
Generally, hard-constrained 

models guarantee physics, and 
may converge and generalise 
better especially when data is 

sparse & noisy.

➞ We propose the first application of 
dfNNs to glaciology. 

➞ Our implementation leverages 
PyTorch’s automatic differentiation in 
the forward pass.

➞ Using a SiLU activation function 
benefitted model convergence.

Directional guidance (proposed) 

➞ We also propose directional guidance, a 
learning strategy that leverages dense 
directional information from satellites.

➞ A PINN-style loss ℒ!"# is added to the data loss.

➞ Can be applied to any NN (including dfNNs).

➞ Let	𝜓 𝑥, 𝑦  (i.e. “psi”) be a sufficiently 
smooth scalar field defined on a 2D 
spatial domain.

➞ Rotating the gradient ∇	𝜓	of this 
surface by 90°	yields the symplectic 
gradient, denoted ∇$ 𝜓.	

➞ The resulting vector field is divergence-
free by construction (∇	 , ∇$ 𝜓 = 0) and 
thus enforces mass conservation.

➞ In 2D the symplectic vector field is 
equivalent to the Hamiltonian vector 
field.

Zoom into gridded predictions 

➞ dfNN + dir (best model) 
naturally captures curved 
flow routing.

➞ PINN + dir  and NN + dir  fit local 
variations less well (spectral 
bias) and produce overly 
linear flows.

→  hard-constrained dfNNs are the more accurate and 
physically reliable than PINNs or NNs.

→  directional guidance (+ dir) boosts all models.

Train & Test − We divide a 200×200 km region over Byrd Glacier, Antarctica 
into train (27k) and test regions (22k) following a chequerboard pattern (see →).

Models  −  dfNN, PINN, and NN (ceteris paribus) +2 additional variants each:
  + dir − directional guidance, using dense surface velocity observations.
  + aux −	auxiliary inputs; here we use surface elevation from satellites.

Metrics  −  RMSE & MAE	↓	and MAD ↓ (Mean Absolute Divergence) over test

 

dfNN PINN NN dfNN + dir PINN + dir NN + dir dfNN + aux PINN + aux NN + aux

- dfNNs models perform best, followed by PINNs and NNs:                         
hard-constraining  >  soft-constraining  >  not constraining

- Soft-constraining significantly reduces divergence, but only 
hard-constrained models produce fully divergence-free vector 
fields (MAD = 0.0).

- Surface elevation as an auxiliary predictor (+ aux), introduced 
more noise than signal and did not improve predictions. 
Presumably, flow controls over Byrd glacier are not expressed as 
variations in surface elevation.

Gridded interpolation by our best 
model for a 50 × 50 km subregions: 

dfNN + dir  which enforces 
the diverge-free constraint 
by design, is the overall 
best model. 
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sparse ice height point data  ℎ  from airborne dense surface velocity vectors 𝒔 from  satellites 

ice height ℎ surface velocity 𝒔

from 𝒔
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 ice flux 𝒗
𝒗 = 	ℎ	 ' 	 𝒔

∇ ' 𝒗 = 0

from MEaSUREs InSAR velocity map (Rignot et al. 2017)from the Bedmap3 collection (Fremand et al. 2023)

𝜕ℎ
𝜕𝑡 + ∇ ' ℎ	𝒔 = smb	 − bmb

After removing negligible terms from the 
mass continuity equation,

it simplifies to a 
divergence-free 
constraint.

Ice flux describes 
the transport of ice 
mass/volume per 
unit time for any 
point in 2D space.

Image credit: NASA
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