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Summary ° , , , , ,
| . o S . Physics-Informed Machine Learning (PIML) Experiments over Byrd Glacier

- Toreliably project sea level rise, ice sheet models require physically plausible '\ _ N _ . .
and skilful interpolations of ice flow from sparse & noisy measurements. o Three PIML strategies after Karniadakis et al. 2021 Train & Test — We divide a 200x200 km region over Byrd Glacier, Antarctica 2

into train (27k) and test regions (22k) following a chequerboard pattern (see —). &

- Mass Conservation can be achieved by imposing a divergence-free constraint on ice Observational bias Learning bias Inductive bias Models — dfNN, PINN, and NN (ceteris paribus) +2 additional variants each: ¢
flux vector fields (V - v = 0), where flux is the ice mass transport rate. unconstrained models soft-constrained models hard-constrained models +dir — directional guidance, using dense surface velocity observations. £

+ aux — auxiliary inputs; here we use surface elevation from satellites. :
- Existing Physics-Informed ML approaches only use soft-constrained PINNs, which learn from observations that additional physics violation model or kernel architecture Metrics — RMSE & MAE | and MAD | (Mean Absolute Divergence) over test
can’t guarantee physics and often suffer from spectral bias and convergence issues. embody physics loss term promotes physics enforces physics exactly
dfNN + dir PINN +dir NN +dir . I
- We propose hard-constrained dfNNs (divergence-free Neural Networks), which Implicit strategy, but Teisberg et al. 2021 & Steid| No glaciology applications yet. M N I M I R e s Zoominto gridded predictions
. . . . . o o o R e e e o y N e e a4 |20 20 A A A 4 A
guarantee Mass Conservation, as well as a directional guidance learning strategy observations of ice flux are et al. 2025 propose PINNs for ~ Generally, hard-constrained N Y I A R i 77| dENN +air (best model)
that leverages dense satellite data. limited and noisy. ice flux. Generally, PINNs lack  models guarantee physics, and g E - | f f U?é; . E m ;5%22 E E " E i Mﬁéé : naturally captures curved
, , .. o . guarantees, and can incur may converge and generalise HEEIEEE f“//%éw . fff?éx 1 f}%ﬁéx: g flow routing.

- Reconstruction experiments on real Antarctic ice flux data highlight the physics & convergence issues and better especially when data is i el Hﬁ/éi 2Z|f2 ~ PINNvaiand NN vai it local
accuracy benefits of using hard-constrained dfNNs over soft-constrained PINNs or spectral bias. sparse & noisy. yiie sy 42 i jj;%% 2 ;;%/42 222]5  variations less well (spectral
unconstrained NNs. gijj,,j;/ ETE :555};%/&5,,“ iiiijj///éé,,” bias) and produce overly

e‘g’ NNS e’g' PINNS - e.g. diNS (proposed) | '420lk = /tr;:n —— g l42cfk - /xc/oordinatg = :45: '42(:kl — B :45‘1: i Iinear ﬂOWS'

inregions in grey 445k

Problem A fluid dynamics trick — parametrising y IJ Results
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Climate projection models rely on inputs that adhere to fundamental physical principles: — Let ¥(x,y) (i.e. “psi”) be a sufficiently stream function ¢ N %f%}‘f'ﬁ—'ﬁf OW B S@ﬂ(’fﬁf %f\éed}?'jt'?f (& dil\! +dir which enforce§ o ] . = I i} T I
smooth scalar field defined on a 2D v [— N T RN T the dl\{ergg-free constraint 2 0537
interpolation with flux spatial domain. A . ;::;;“ 3 ;jﬁif,,f,: by design, is the overall 02 4 0391 | | 0466 | | 0478 0385 | | 0441 | | 0448 0447 || 0493
divergences —_— x see Seroussi et al. 2011, — Rotating the gradient V ¢ of this 2 ﬂ’ "'3§§§§§§ best model. .
Morlighem et al. 2011, surfa!ce by 90° Y|e|dithe symplectic e ‘::::: ’ dfNN  PINN NN dfNN+dir PINN+dir NN +dir dfNN+aux PINN+aux NN +aux
i : and Nias et al. 2018. gradient, c!enoted \% 1/} o X X | S Gridded interpolation by our best g
S — — Theresulting vector field |sld|vergence- P P model for a 50 x 50 km subregions: dfNNs models perform best, followed by PINNs and NNs:
divergence-free = sea level rise free by construction (V -V l/{= 0) and (a_x’ 8_y> (a_y’ _8_x) —— dfNN-+dir ice flux (V- v = 0) — hard-constraining > soft-constraining > not constraining
flux interpolation —_— —»  projections that thus enforces mass. conservajuon.. o o | N oo s oo [ 2 - Soft-constraining significantly reduces divergence, but only
reliably inform = In 2!3 the symplectlcvc.actor. field is = _ ’ Sha b IR R 2 hard-constrained models produce fully divergence-free vector
climate action ?qlu(;valent to the Hamiltonian vector v.vip—0 | S W 3 fields (MAD = 0.0).
1ela. X ha 84 ¢ 74 VAV Y A A R Y Y og . ope . .
! L, TR : j 5 Y. . v .% .. = - Surface elevation as an auxiliary predictor (+aux), introduced
. . . o o o * . H Qlvy vy AR ) )+ 2pp B s a. o . . o o o
— Numerical ice sheet models require ice flux initialisations to respect Mass Conservation (MC). — By parametrising a stream function i we can model guaranteed divergence-free vector fields. Elvvrrvifyerrssreiiil B more noise than signal and did not improve predictions.
ML UM T e Y D N Presumably, flow controls over Byrd glacier are not expressed as
St "BL! T faaw ~ ™ N = . . . .
4 224 R 7 ektobbte 1 IR variations in surface elevation.
l ' The di freeN IN k (dfNN i 2 RS2 7 - 2R
Rea AntarCth Data C Wergence' ree Neurd etwor ( ) i S AT - AL Ll e — hard-constrained dfNNs are the more accurate and
U o e N ineilusls
. , , . . . <[\ 17 »/,/ [V VPP PPPIIIID <t F physically reliable than PINNs or NNs.
sparse ice height point data h from airborne dense surface velocity vectors s from satellites Based on hard-constrained methods introduced in A 7R 5 s e .
: : : : " —_— S0x30km — directional guidance (+dir) boosts all models
) - ModelInclusive Learning [Kuroe et al. 1998] - early work proposed for learning vector field decompositions. 420k x coordinate 470k )
=pr ice height h surface velocity s \% ““ - Hamiltonian Neural Networks (HNNs) [Greydanus et al. 2019] - initially developed for energy conservation. —
x VAN m < I %5 . . L . L . ointhe
g s"{/ / 3_(?00 5 iso | Neural Conservation Laws [Richter-Powell et al. 2022] - generalisation for solving the continuity equation. . d f k l\J/lL4Cryo
-1\ 3 o Ongoing and future wor MLacryo
£ Z h - s £ R — — We propose the first application of y
v : : | E dfNNs to glaciology. v Preprint now available: Probabilistic model variant (dfNGP) incorporating the &.l .
2 2 — Our implementation leverages dfNN into a divergence-free Gaussian Process to quantify spatially varying @"lx- iy _:q_g
& .. 800m Sl i — ] B _ PyTorch’s automatic differentiation in ncertaint FLo o oyt
420k xcoordinate 445k 420k xcoordinate 445k Image credit: NASA the forward pass oY P u y' :od * - -’.lt
from the Bedmap3 collection (Fremand et al. 2023) from MEaSURESs InSAR velocity map (Rignot et al. 2017) . Using a SILU activation function ay @ O Applications to other environmental flows such as of ground water, wind,ocean 2% ™ oy
SIDE VIEW ice flux v . . . . S Lot -
§ lcesurface - dinate — 5. ., Afterremoving negligible terms from the benefitted model convergence. § g_¢ = 5 curren’fs, poIIu.tants, c.)r the ?tmosphere | | o DR
velocitv;torﬂ/ V= S sl = mass continuity equation, . . ] 2 [ Extension to higher dimensions and spatio-temporal solutions to the continuity
hos=v Ice flux describes ¢ / ] Directional guidance (proposed) equation (building on Richter-Powell et al. 2022)
I . £ & _ . . . . R L
; the transportofice s +V-(hs)= - — We also propose directional guidance, a : . @—"'?&"‘q.@
h s v mass/volume per ¢ 3 i learning strategy that leverages dense from s For the paper, the dfNN implementation in PyTorch, fully fw}ﬂ"i
icgheight i ice flux unit time for any N A | g Itsimpliriesto a . ) ) . i d .bl . t d f ” f ) Xl by
(thickness) | ¢ [m*/yr] o 8 [ V.-v=0 divergence-free directional information from satellites. . . . reproducible experiments, and rull rererences scan LT e Yolrd
m ' pointin2D space. ¢ A 200k s T + directional guidance + Ly, 1-,’;* | .ﬁ

_> 420k  xcoordinate 445k constraint. — APIN N-style loss Ldir is added to the data loss. This research was supported by the Australian Government through the Australian Research Council’s ‘ ":;.‘
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