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Abstract

Understanding how ocean temperature influences microbial communities is critical
for forecasting ecological responses to climate change. This paper outlines a frame-
work for applying the Rubin Causal Model (RCM) to observational microbiome
sequencing data using matching methods. The aim is to estimate the causal effect
of temperature on microbial taxa, while controlling for confounding environmental
variables. This methodology offers a transparent, interpretable, and simulation-free
way to extract causal signals from complex ecological datasets.

1 Introduction

Ocean microbes form the base of the marine food web and play a foundational role in global
biogeochemical cycles, such as carbon fixation, and thus in climate regulation. Changing conditions,
particularly the increase in sea temperature, poses a threat to the stability and function of this
vital ecosystem. Numerous observational studies have documented a strong correlation between
temperature and shifts in microbial community structures and diversity [, 12, [3].

Recent global-scale surveys, such as Tara Oceans [} 4} 5]
and the GRUMP database [6], begin to provide microbial
sequencing and environmental covariate data at a scale that
is amenable to statistical modeling. Common techniques
include correlational analysis [[1], eco-dynamic modeling .
[2]], joint taxon-environment models [7]], and generative 4
latent variational models [[8]. Methods that determine po-

tentially causal drivers of microbial patterns in the global

ocean are thus far largely elusive.

Here, we propose a potential outcomes framework to es- ean amperar n G pr st IR

timate the causal effects of environmental variables on ] )
microbial taxa using observational data. We apply differ- Figure 1: Global sampl'mg stations from
ent matching strategies to construct a quasi-experimental the Tara Oceans project, colored by
design, allowing the estimation of the effect of temperature mean sea surface temperature (°C)
increases on microbial community composition.
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2 Related work

Our proposal employs matching [9]] to construct a quasi-experimental design [10] by balancing
covariates between treatment and control groups. This approach is part of a larger toolkit, including
inverse probability of treatment weighting [[11} [12], machine learning methods such as Causal Forests
[13] for estimating heterogeneous effects, and double machine learning [14]]. While similar methods
have been successfully applied to other complex biological systems, such as environmental exposure
effects on human gut microbiota [[15] or ecology [16]], their application to marine ecology remains
underexplored. Our study builds on this foundation to formally estimate the effect of warming
temperatures on ocean microbial communities.

3 Methodology

3.1 Causal framework

We adopt the potential outcomes framework [[17] to formalize the problem of estimating the causal
effect of temperature on microbial communities from observational data. For each sampling unit ¢,
let T; € {0, 1} be a binary treatment indicator, where T; = 1 denotes exposure to high temperature
and 7; = 0 exposure to low temperature. Let Y; be the observed outcome of interest. We define two
potential outcomes for each unit: Y;(1), the outcome that would be observed under treatment, and
Y;(0), the outcome under control. The individual treatment effect is 7; = ¥;(1) —Y;(0). Since we can
only observe one potential outcome for each unit, we focus on estimating the average treatment effect
on the treated (ATT) assuming the standard Stable unit treatment value and ignorability assumption:

ATT = B[|T, = 1] = E[Y,(1) - Y,(0)|T; = 1].

3.2 Data and covariate balancing via matching

The metagenomic-derived 16S ribosomal RNA gene tags used in this study were sourced from the
global Tara Oceans projectE] [L]. The sequencing reads were clustered into operational taxonomic
units (OTUs) at a 97% similarity threshold, and taxonomic assignments were made using the SILVA
database (v115) [18]]. The dataset was filtered to include only bacterial taxa and to exclude samples
with missing values for the covariates of interest.

The treatment variable 1" was defined by partitioning samples into terciles based on sea surface
temperature. The upper tercile (> 25°C') constitutes the treatment group and the lower tercile (<
19°C) the control. Key confounding variables, including salinity, nutrient concentrations (phosphate,
nitrate), and water column depth, were identified as covariates (X) for matching, resulting in 72 (out
of 139) samples suitable for matching.

To mitigate selection bias from the observational data, we use two matching methods to create a
balanced comparison between the treatment and control groups, thereby mimicking a randomized
experiment: (i) Propensity Score Matching (PSM) where we estimate the probability of being in the
high-temperature group based on covariates X and match treated units to control units with similar
propensity scores [[19]]; and (ii) Bipartite Matching (BM) where we construct a bipartite graph of
treated and control units, creating edges only between units with sufficiently small distances in their
covariate vectors, and then find the maximum number of matched pairs [15} 20]].

3.3 Estimating average treatment effect on the treated

We estimate the ATT of two quantities of interest by comparing the outcomes of the matched groups.
Firstly, we assess the treatment effect on the whole microbial community, as measured by (i) observed
richness (the cardinality of the set of unique taxa) and (ii) alpha-diversity via the Shannon entropy
[21]. Secondly, we identify individual taxa affected by the treatment via compositionally-aware
differential abundance (DA) testing. We employ LinDA [22]], a state-of-the-art DA method that fits
a robust linear model for each taxon to test for a significant association with the treatment variable
while controlling for multiple testing [23].

'Data were retrieved from http://ocean-microbiome.embl.de/companion.html



4 Results

4.1 Matching strategies result in more balanced covariates

Prior to matching, there were substantial imbalances in nutrient levels (see Table[T]and Supplementary
Fig. 4). After PSM and BM, most differences were substantially reduced, thus approximating the
conditions of a randomized experiment.

Table 1: Standardized mean difference of covariates before and after matching

Standardized Mean Difference

N Salinity Phosphate Nitrate + Nitrite SRF (Depth) DCM (Depth) MES (Depth)

Unmatched 72 0.059 0.665 0.693 0.884 0.296 0.843
PSM 36 0.216 0.023 0.118 0.000 0.000 0.000
BM 32 0.163 0.018 0.003 0.000 0.000 0.000

4.2 Analysis suggests a negative effect of higher temperature on diversity and a shift in the
bacterial composition

We first estimated the ATT of high temperature on microbial community composition, consistently
showing that higher temperatures had a negative effect on microbial richness and diversity (Fig. [2]
(A)). For example, we estimated a reduction of approximately 427 unique taxa using PSM, indicating
that warming sea surface temperatures lead to a loss of microbial richness.

A . . C 54 > 7 [
Community summary statistics ° | \
Method Richness Shannon ' .
Baseline 1 1
(Unmatched) -801.9 = 153 -0.23 + 0.06 : :
PSM -426.5 £ 178 -0.23 £ 0.05 1 1
BM -5143 + 199 -0.15 + 0.07 , '

B ; I ®
Individual taxon L s L EELroEE
Method Negative Positive L !
Baseline - 25 50
(Unmatched) 1718 1546 log2FoldChange
PSM (’D 986 432 @ . l
BM 613 239 log2FoldChange

50 -25 00 25

Figure 2: (A) Effect of higher temperature on diversity statistics. (B) The number of significantly
(e = 0.05) positive or negatively affected taxa. (C) Volcano plot showing taxon log-fold changes on
the x-axis and (log-scaled) adjusted p-values on the y-axis after PSM.

We next investigated how high temperatures affected differential abundance of microbial taxa (Fig. 2]
(B)). Our analysis revealed potentially widespread causal effects on microbial taxa (see Fig. 2](C)).
For example, after PSM, we estimated 986 taxa to have significant negative log-fold changes at high
temperatures and 432 taxa to have significant positive log-fold changes. Our analysis also confirmed
prior observations [2] that, among the set of differentially abundant taxa, higher temperatures favor
microbes with slower growth rates (see Supplementary Fig. [5).

5 Discussion

We have presented a causal inference framework, grounded in Rubin’s potential outcomes model, to
estimate causal effects of temperature on ocean microbial communities from large-scale microbiome
survey data. Using data from Tara Oceans [5], we exemplified our proposal by applying (i) two
different matching to construct a quasi-experimental design after balancing key environmental
covariates and (ii) by investigating the effect of temperature on microbial community composition
and individual taxon abundances.

The framework indicates an overall negative effect of increased temperature on microbial richness
and diversity, sharpening results from the (unmatched) observational analysis. While the analysis
on (unmatched) observational data suggested a nearly balanced differential abundance response, our



causal framework suggests a predominantly negative impact on species abundances, particularly for
fast-growing bacteria [2].

Our work highlights the need for causal methodologies to disentangle drivers in complex global
environmental systems. While our current analysis is limited by the low sample size, the proposed
framework is readily scalable and amenable to future large-scale ocean survey data analysis.
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6 Supplements

6.1 Matching

We employ two matching methods to create groups with balanced covariate distributions: (I) Propensity score
matching (PSM) : (1) estimate the propensity score, e(X;) = P(T; = 1/X;), using a logistic regression. (2)
Perform 1:1 nearest neighbor matching on the logit of the propensity scores with a caliper of 0.1 standard
deviations, without replacement. Maximum bipartite matching [[15}20]: Reframe as finding the maximum pairs
in a bipartite graph. The two sets of nodes represent the treatment and control groups, and the edge exist between
a treated unit ¢ and a control unit j if their distance in covariates (see Supplement[6.4) is small enough.

6.2 Estimating the ATT

To estimate the Average treatment effect on the treated (ATT), we employ a regression the matched samples. We
then estimate the ATT by applying OLS to the following model on the matched data:

Y = o+ martTi + €

Here, Y; is the outcome, 7; is the treatment indicator, €; is the error term, « denotes the intercept and the
coefficient Tarr is our estimate of the treatment effect.

Let Z™*P be the matrix with the abundances, with samples as the rows and microbes as columns. As the
outcomes Y; we use two summary statistics:

* The observed richness for a given sample i: 3 °7_, I(Z;; > 0), where I(-) is the indicator function,
which is equal to 1 if the condition Z;; > 0 is true, and O otherwise.

* The alpha diversity (as measured by the Shannon entropy) for a given sample 7: — Z?Zl pij In(psj)

with p;; denoting the count of a single microbe divided by the total count of all microbes in that
o Zij

sample (the row sum) p;; = A

Since the matrix Z is compositional, we used LinDA as a method to estimate the ATT to correct for the constraint

of the data. Then every microbe is tested individually.



6.3 Data preprocessing

Tara
N =139
temperature < 10C
N=115
N=76
N=72

Figure 3: Preprocessing steps: First filter samples with less than 10 degree C, then get the samples for
the upper and lower tercile, and finally filter out the two samples with missing values in the matching
variables.



6.4 Matching algorithm

Following [[15] we employ the matching as follows: Subject ¢ from the observed treatment group is matched to a
subject j in the control group if the covariate vector X; is similar enough to X ;. We define the difference metric

as for each variable k of interest.

0, if|X;—Xj|<dpfork=1,...K
o0, otherwise

D(X;, X;) :{

(1) Create a bipartite network, such that a unit is a node either as a treatment or control node. (2) Construct edges
between the unit if the difference metric is smaller than co. (3) Using the igraph R packages [24] to find the
maximum bipartite matching. With the following Jx:

Table 2: Threshold used for BM

Variable Maximum allowed difference ¢;,
Salinity 1.8
Phosphate 0.8

Nitrate_Nitrite 1
Depth_category  Same category

For propensity score matching we used the package matchit [25].



6.5 Distribution after matching
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Figure 4: Covariate distributions before (unmatched) and after (Bipartite (BM), PSM) matching,
visually confirming improved balance between high and low-temperature groups.



6.6 Specification of the preprocessing before differential abundance testing

For differential abundance testing we performed a 10% prevalence filter resulting in the following table.

Method n Taxa after filter
Baseline

(Unmatched) 72| 7213

PSM 36 | 6594

BM 32 | 6547

Table 3: Number of taxa for differential abundance testing

10



6.7 Distribution slow and fast growing bacteria

Abreu et al. [2] investigated the effect of higher temperature on slow and fast growing bacteria where maximum
growth rate is approximated by 16S rRNA copy numbers. Higher copy numbers indicate higher growth. For the
PSM data, we associated the set of differentially abundant taxa to their respective copy numbers and compared
the resulting copy number distributions (weighted by the relative abundances of the taxa) for both the positively
and negatively differentially abundant taxa, respectively. Supplementary Fig. [5]visualizes the resulting smoothed
distributions for the species that profit from warmer temperatures (positive DA, red) and those that are harmed
by warmer temperatures (negative DA, blue). We observed a distributional shift toward lower mean weighted
copy numbers for the species set that profits from higher temperatures, thus confirming Abreu et al.’s analysis.

10.04
|
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higher temperature higher temperature
Sign/Effect

Sign/Effect . Harmed by higher temperature . Profit from higher temperature

Figure 5: Distribution shift indicates that slow growing bacteria as indicated by low copy number are
favored.
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