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1. Motivation 2. Objectives

The energy sector is undergoing rapid transformation, driving large-scale invest- Can we develop a data-driven model to
ments in emerging technologies and pathways. The siting and co-location of assess multifaceted trade-offs and local
theses technologies create synergies that enhance system efficiency, but also impacts in deploying multiple emerging
trade-offs that reshape the environmental and socioeconomic outcomes and energy transition pathways?

introduce unintended local risks. ,
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Figure 1: Integrated framework from Zaki et al.

Facilitate flexible and scalable scenario
analysis through modular model design.

3. Methodology 4. Results

Figure 2 is a simplified demonstration of the coupled Table 1 summarizes the portfolio of energy transition pathways used

Agent-based Modeling (ABM) and Life Cycle in the Southern California case study. Figure 4 presents the system-
Assessment (LCA) framework for simulating the co- level impact assessment across water, land, and energy dimensions.
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locating deployment of emerging energy transition Figure 5 maps site-level hotspots driven by resource-intensive energy
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the .d.ata-driv.en, unsupervised learning-based Table 1: Pathway portfolio. Figure 4: Impact assessment for the pathway portfolio.
decision-making process of the agents from -

multidimensional, multiscalar datasets. kS %
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Step 1 - K-means Clustering (unsupervised grouping)
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( Rank clusters | Step 2 - Ranking Centroids (based on the given order for the feature vector) Figure 5: Impact assessment of co-located deployment at the spatial scale.
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Figure 3: Step-wise flowchart of the agent’s decision rationale. | JWe developed the first coupled ABM-LCA model to simulate and
The ABM-LCA model is applied in Southern assess a portfolio of energy transition pathways at the spatial scale,

capturing and comparing multi-pathway, multi-impact, multi-resource,
and dynamic interactions.
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California, where energy transitions face resource
limits and socioal and environmental pressures.
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