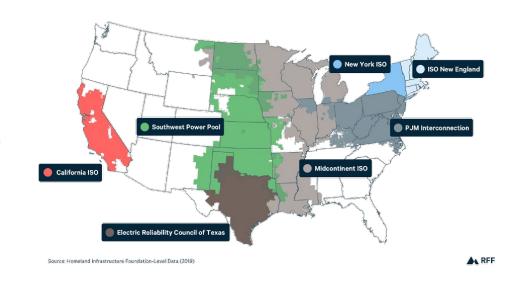


Al-driven Grid Optimization Can Reduce Emissions

Kyri Baker, Jackie Kay, Miha Zgubič, Laura Toni, Steven Bohez, Eric Perim, Marc Peter Deisenroth, Sofia Liguori, Sephora Madjiheurem, Sims Witherspoon, Sophie Elster, Kyle Levin, Luis Piloto

The optimization at the core of grid operations

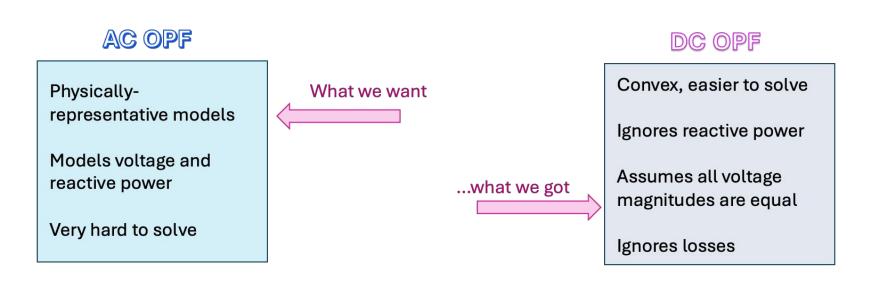

1960's: Carpentier formalized the idea of "optimal power flow (**OPF**)" in electricity grids¹.

1990's: Deregulation of power grid operations began in the United States.

Now:

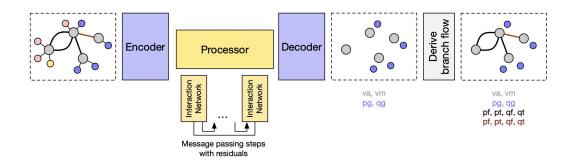
Varying levels of deregulation and market participation exist throughout the country.

Seven main **independent system operators (ISOs)** run competitive wholesale power markets which **run an optimization problem** to match supply and demand economically and reliably



¹Carpentier, J. "Contribution a l'etude du dispatching economique." Bulletin de la Societe Francaise des Electriciens, 1962.

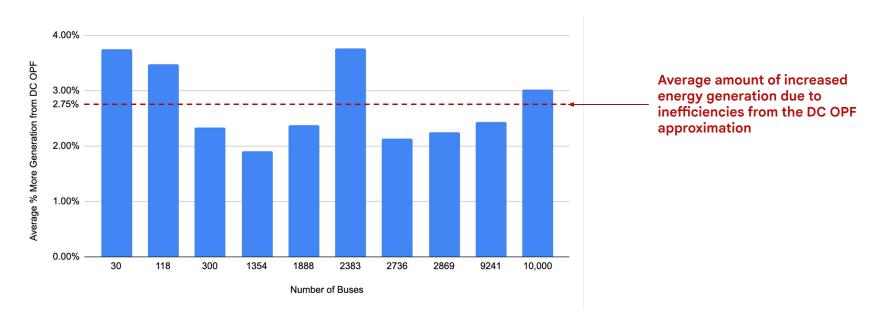
Grid operators make simplifications ("DC OPF") to the true physics


Most US grids run based on a linear approximation (DC OPF) of the true problem (AC OPF).

Since DC OPF is not physically feasible, they perform post-processing where they adjust variables - introducing inefficiencies!

We want AC OPF! For reliability, cost, and emissions

Idea: Bypass solving an optimization problem altogether

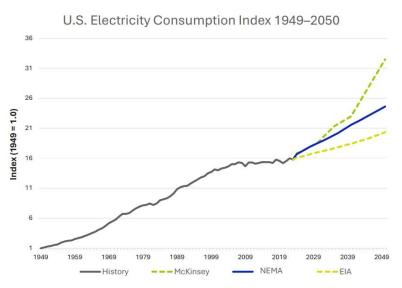

Let's consider the **10,000** bus Graph Neural Network (GNN) from DeepMind in the 2024 CANOS paper [Piloto et al., https://arxiv.org/abs/2403.17660].

This system size is bigger than ERCOT (Texas). If we want to train realistically sized grids, what's the carbon footprint from training now?

The benefit from AI-based grid optimization

Al can get us very close to true AC OPF solutions reliably, fast enough for real time system operation (5-minutes).

Using AC OPF instead of an approximation **lowers the amount of power generation** by 2.75% on average (in the considered systems)

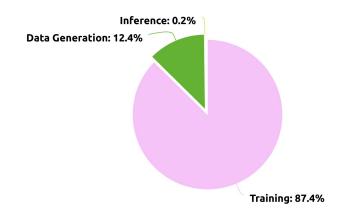


2% less power generation = significant

If our total generation in the U.S. in a year is 4300 TWh, 2% of this is 86 TWh.

That's the annual electrical energy consumption of 12 million homes!

[https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator]



Source: Utility Dive

But how much energy does it take to train CANOS?

Across a year, we looked at:

- Energy from dataset generation.
- Energy from model training, evaluation, hyperparameter tuning
- Energy from performing inference (using CANOS)
 - Plus AC power flows for post-processing feasibility

And finally, energy from the power plants themselves, given the decisions produced by CANOS

Status Quo optimization compared to AI-based optimizers

Table 1: Consumption breakdown excluding generation

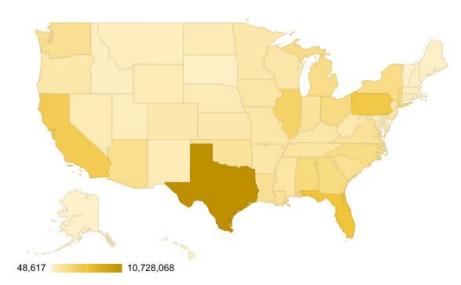
Energy Use Type Annual kWh

Data Generation (AC OPF) 20–780

Training (incl. tuning) 2,600–5,500

Inference 11–12

Assumed Total for Analysis 6,000


DC OPF + AC PF 36–652 Running status-quo optimizers

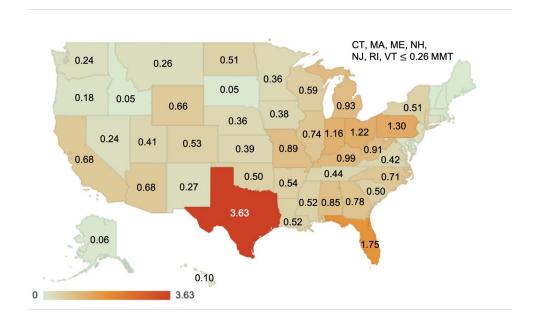
Using the status-quo optimizer wins by far (600 kWh vs 6,000 kWh) because it takes more energy to train a graph neural network.

But what about the optimality of the power plant dispatch decisions?

Hypothetical energy savings across the U.S. with CANOS

Assuming a prediction error consistent with Piloto et. al of 1% for active power, and a 2% energy reduction from AC OPF vs. DC OPF, we see annual savings of up to **10 TWh** (Texas)

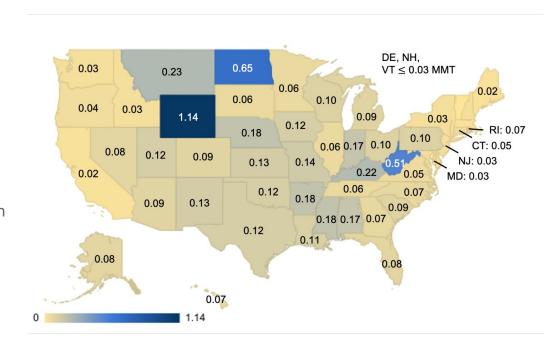
The energy to train CANOS is offset by its benefits within minutes of operation


What about carbon?

Each state's generation mix has varying levels of carbon intensity.

A purely renewable state would not have benefits!

But no state is purely renewable.


Here is the annual decrease in CO2 emissions from generation (MMT) if we use CANOS.

Carbon reduction per capita

States with high **carbon** intensity, high **electrification**, and **low population** benefit most

Alaska has high fossil fuel use, but low electrification (heating is often fossil-fuel based and not electric)

Conclusions

Moving to an AI-based optimizer can help us achieve more efficient grid operations, reducing energy consumption and consequently, emissions.

Under these assumptions, an AI-based grid optimizer can lower annual emissions equivalent to ~28 MMT of CO2, or:

- Removing 6.5 million gas-powered mid-size passenger vehicles from the road for a year.
- 95% of the annual CO2 emissions of Denmark.
- 50,000 roundtrip flights from San Francisco to New York.
- The production of one hamburger for every person on the planet.
- The annual CO2 emissions of 26 gas-fired power plants.