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Computer Vision for Camera Traps

Proposed Approach: Site-Specific On-Device PEFT

Automatically triggered cameras, also called camera traps, are an indispensable tool for [
studying animal ecology. |
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Autoencoders are great for image compression because they

consistently outperform algorithms like JPEG in terms of compression
ratio and reconstruction quality.
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Results

We propose a method for efficient deep-learning based image Compression Ratio vs SSIM: Saliency-guided Original (1:1 background vs animal weight) Original (0.001:1 background vs animal weight)
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A weighted MSE loss allows the model to assign lower Compression Ratio

penalties to reconstruction errors in less important
background regions.

We also derive a new weighted
MSE loss based on our method.
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