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Abstract

Automatically triggered cameras, also known as camera traps, are an indispensable
tool for studying animal ecology. Retrieving data from remote camera traps is
an ongoing challenge. Especially when deployed in remote areas, bandwidth of
wireless transmission is extremely limited. We propose a method for efficient
deep-learning based image compression to address this challenge. Our method
utilizes a state-of-the-art autoencoder network to compress images into a compact
latent representation. By simply transmitting these latents we demonstrate that
in many cases we can reduce bandwidth compared to JPEG while achieving the
same or better reconstruction quality. We also propose a method for deployment-
specific fine-tuning of our autoencoder architecture to specialize models at the
edge to specific environmental conditions. Specifically, we fine-tune the encoder
with LoRA and saliency-guided compression. Our experiments demonstrate that
this approach reduces bandwidth requirements and improves reconstruction error,
particularly at locations with abundant imagery.

1 Introduction

Figure 1: Example camera trap deployment.

Animals have an outsized impact on their environment,
including on factors that are highly relevant to carbon
sequestration rates, such as tree recruitment [19]. For
studying the ecology of animals, automatically triggered
cameras, also known as camera traps, are an indispens-
able tool. These devices enable researchers to monitor
wildlife in their natural habitats with minimal human dis-
turbance, providing invaluable data on animal behavior,
population dynamics, and ecosystem health [26]. How-
ever, camera traps are often deployed in remote locations
far from existing communication infrastructure, presenting
significant challenges for data retrieval. Typically, data
must be retrieved physically by exchanging SD cards, which can be time-consuming and impractical
for large-scale deployments or long-term studies. Alternatively, data can be transmitted via satellite
or radio links. This would be especially desirable for applications such as poaching prevention [14],
where real-time information is needed for intervention.
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A major limitation in utilizing satellite and radio links for transmitting camera trap data is the low
available bandwidth and high cost of transmission. These limitations mean that highly efficient data
compression techniques are needed in order for transmission to be a practical option for most camera
trap users. From our conversations with users, we have found there is consensus that in order for
transmission to be practical this bandwidth would need to be reduced to approximately 170 bytes per
image. Unfortunately the compression ratios offered by traditional image codecs such as JPEG are
typically several orders of magnitude away from this target—for example, a standard 720p JPEG
image typically ranges from 100 KB to 800 KB depending on quality settings and image complexity.

In this work we investigate the potential for using efficient deep learning compression techniques
to address this bottleneck. Our intuition is that there are several aspects of camera trap imagery
that make learning-based methods particularly suitable: First, camera trap deployments are static,
with cameras typically affixed to trees (see Fig. 1). This means that the backgrounds of transmitted
imagery from a given site are very similar, and learning site-specific characteristics should be possible.
Second, due to increased interest in computer-vision based processing of camera trap imagery, there
are now commercially-available camera traps from companies like Conservation X Labs [17] that
incorporate AI-ready edge-computing hardware, which could enable fine-tuning models on device as
well as using existing computer vision models for detecting wildlife such as MegaDetector [5] to
encourage compression techniques to focus on salient image regions.

We propose a novel approach to image compression for camera traps that (1) leverages the consistency
of the monitored environment by fine-tuning site-specific encoders on-device, and (2) incorporates
strong pre-trained wildlife detection models to guide the compression process.

We perform experiments to demonstrate that: (1) Our autoencoder-based approach is consistently
able to achieve a better reconstruction than JPEG compression with a fixed number of bits per pixel,
and (2) Location-specific fine-tuning consistently improves reconstruction performance. Overall our
results demonstrate the feasibility of using autoencoders, LoRA fine-tuning, and saliency-guided
compression to enable low-bandwidth connectivity for camera trap deployments.

2 Related Work

Existing works have shown the viability of using autoencoders [11] for improving lossy image
compression [9, 28]. Traditional autoencoders consist of an encoder that compresses the input into a
lower-dimensional latent space and a decoder that reconstructs the image from this compact represen-
tation. Recent work has extended classical transform coding [20] by replacing linear transforms with
learned non-linear neural network-based transforms. Several works have improved entropy modeling
by learning conditional priors. Theis et al. [24] use a fully factorized prior. Johnston et al. [13]
add spatially-adaptive bitrates. Ballé et al. [4] build on these advancements and introduce a learned
“hyperprior” to model spatial dependencies between different elements of the latent encoding. We use
the method from Ballé et al as a starting point and build upon the implementation provided by [6].

3 Methods

Autoencoder structure: We adopt the hyperprior model introduced by Ballé et al. [4], which has
demonstrated state-of-the-art performance in image compression. The model architecture consists of
four key components: (1) An encoder ga transforms the input image x ∈ RH×W×C into a latent
representation y ∈ RH

16×
W
16×Cy using a series of convolutional layers; (2) A hyperprior encoder ha

processes y to generate a hyperlatent z ∈ RH
16×

W
16×Cz . This models the spatial dependencies in the

latent space; (3) A hyperprior decoder hs reconstructs parameters for the entropy model of y from
z; (4) Finally, a decoder gs reconstructs the image x̂ from y using information from the hyperprior.
The model is trained using a variational framework that balances compression rate and reconstruction
fidelity. The overall loss function is defined as:

L = Ry +Rz + λD(x, x̂), (1)

where Ry = − log2 p(y|z) and Rz = − log2 p(z) represent the “rates” (the bits required to represent
each pixel) for the main latent representation and hyperlatent, respectively, D(x, x̂) is the distortion
measure (i.e. a reconstruction loss such as mean squared error or SSIM), and λ is a hyperparameter
that balances rate and distortion.
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A key component of this autoencoder framework is an entropy model that attempts to estimate the
probability distribution of the image data being compressed, representing the likelihood of observing
various components of a given image. The key intuition here is that probability distributions with lower
entropy require fewer bits to represent [22]—this is especially relevant in our setting, as backgrounds
are relatively static (i.e. they have low entropy with respect to the overall data distribution) and thus
we can use fewer bits to represent them. In a typical autoencoder, the latent embedding y = ga(x; θ)
assumes all elements of the embedding are independent. This may be suboptimal due to spatial
dependencies. Therefore, Ballé et al. introduce a learned hyperlatent z = hs(y; θ), and then represent
the probability distribution of y as p(y|z) =

∏N
i=1 N (yi;µi(z), σ

2
i (z)). where N is the number of

elements in y, and µi(z), σ2
i (z) are the mean and variance predicted by the hyperprior decoder hs.

After entropy modeling, both y and z are entropy coded into a compressed bitstream using a method
like arithmetic coding or range coding that has of a dynamic size based on the entropy of the image.

Location-specific fine-tuning: We fine-tune the autoencoder at each camera trap deployment site. In
some sense, the goal is to overfit the model to each site such that we generate latent representations
of each image with the lowest reconstruction error possible. We freeze the decoder and only fine-tune
the encoder, allowing us to transmit the latent representations which can be later decoded by the
fixed decoder from pre-training. We experiment with standard fine-tuning as well as fine-tuning
with low-rank adaptation (LoRA [12]) to reduce GPU memory requirements (on average up to 70%
decrease in our experiments), which may be desirable for certain edge hardware.

Saliency-guided compression (SGC): The primary use case for transmitting data from camera traps
is to enable users to verify the presence of wildlife. Therefore the reconstruction quality of background
pixels is less important than foreground pixels, potentially enabling us to improve compression ratios
further by using varying compression techniques between foreground and background.

To test this hypothesis, we utilize the pretrained wildlife detector MegaDetector [5] using the
SpeciesNet codebase [10]. We utilize the bounding boxes predicted around animals by MegaDetector
in two ways: (1) We modify the loss function from equation [1] to utilize different λ ratio values
for pixels inside and outside predicted bounding boxes, downweighting background pixels; (2) We
experiment with applying a simple Gaussian blur on background pixels, as blurring the background
significantly reduces the entropy in the image while preserving most of the valuable image content.
This allows for higher compression ratios due to the entropy model described above.

4 Experiments

We perform experiments using the Snapshot Kgalagadi camera trap dataset[1]. The dataset contains
3,611 sequences of camera trap images, totaling 10,222 images from 20 different camera sites. For
each experiment, we fine-tune one model per site and report performance over the union of all sites.

We used the a pre-trained scale hyperprior model introduced by Ballé et al. [4]. We finetune
the encoder using both standard fine-tuning and low-rank adaptation. We report results for eight
different values of λ, similar to the original work, each corresponding to a specific trade-off between
compression ratio and reconstruction quality. The reconstruction quality between the reconstructed
image and the original image is measured by structural similarity index (SSIM). We compare our
approach to JPEG compression at different quality levels as well as to the pretrained autoencoders
provided by Ballé et al.. We also test our approach with and without background blurring. When
using blurring, we report SSIM only on foreground pixels in all experiments for fair comparison.

Results: As shown in Figure 2, by fine-tuning the autoencoder using saliency-guided compression
(SGC), the fine-tuned models significantly outperforms Ballé et al’s baseline model and JPEG in
both SSIM and compression ratio. The LoRA fine-tuned model performs slightly worse, which is
expected since LoRA typically trades some performance for improved efficiency [7].

SGC greatly helped our case. Without SGC, meaning a 1:1 ratio between λanimal and λbackground, the
improvement in compression ratio after fine-tuning is less than 2%. By changing λanimal and λbackground
ratio to 1:0.001, we inform the model that background is less important and can be compressed
more. An example of this can be shown in Figure 3. Visually, in the λbackground = 0.001 model,
the background is more compressed, and the animal has a slightly sharper contour. This is both
backed up by numeric numbers in a higher SSIM and compression ratio. As shown in Figure 2,
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Figure 2: Results of SSIM vs. compression ratio for different configurations

peak compression ratio with saliency is 403.44. Without saliency, it is only 253.3 and has a higher
reconstruction error.

(a) λbackground = 1 model (b) λbackground = 0.001 model
Figure 3: Baseline vs. finetuned model

Hardware validation: We validated our approach end-to-end on real hardware. A Jetson Orin AGX
performed on-device training (full fine-tuning and LoRA) and compressed images to embeddings,
which were sent via Ethernet to a Raspberry Pi. The Pi transmitted embeddings over an SX1262 long-
range radio HAT [2] to a laptop with a matching HAT, achieving reliable reception at ∼400 m and
successful image reconstruction. Unlike satellite links, long-range radios are low-cost and fee-free.
Future work includes stress-testing hardware and quantizing models for lightweight deployment.

5 Conclusion

We have presented a novel method for efficient, site-specific fine-tuning of autoencoder-based image
compression for wildlife camera traps. By leveraging LoRA for parameter-efficient updates and
applying saliency-guided compression, we enable bandwidth-efficient model adaptation at the edge.
Our experiments demonstrate the potential for this approach to offer significant compression gains
and improved reconstruction quality compared to conventional codecs like JPEG. We hope to build
upon this work toward a scalable solution for remote environmental monitoring with constrained
satellite bandwidth. By enabling better camera traps pipelines, we can monitor and safeguard wildlife
that keeps ecosystems climate-resilient.

4



References
[1] Snapshot kgalagadi dataset. https://lila.science/datasets/snapshot-kgalagadi.

Accessed: 2025-08-19.
[2] Sx1262 868m lora hat. https://www.waveshare.com/wiki/SX1262_868M_LoRa_HAT, n.d.

Accessed: 2025-07-02.
[3] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca

Benini, and Luc V Gool. Soft-to-hard vector quantization for end-to-end learning compressible
representations. Advances in neural information processing systems, 30, 2017.

[4] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized image
compression. International Conference on Learning Representations (ICLR), 2017. URL
https://arxiv.org/abs/1611.01704.

[5] Sara Beery, Dan Morris, and Siyu Yang. Efficient pipeline for camera trap image review. arXiv
preprint arXiv:1907.06772, 2019.

[6] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay Pushparaja. Compressai: a py-
torch library and evaluation platform for end-to-end compression research. arXiv preprint
arXiv:2011.03029, 2020.

[7] Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Cody Blakeney, and
John P. Cunningham. Lora learns less and forgets less. In Proceedings of the Neural Information
Processing Systems (NeurIPS) Conference, 2024. arXiv preprint arXiv:2405.09673.

[8] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Deep convolutional
autoencoder-based lossy image compression. In 2018 Picture Coding Symposium (PCS),
pages 253–257. IEEE, 2018.

[9] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable rate deep image compression
with a conditional autoencoder. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3146–3154, 2019.

[10] Tomer Gadot, S, tefan Istrate, Hyungwon Kim, Dan Morris, Sara Beery, Tanya Birch, and Jorge
Ahumada. To crop or not to crop: Comparing whole-image and cropped classification on a
large dataset of camera trap images. IET Computer Vision, 2024.

[11] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

[12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[13] Nick Johnston, Damien Vincent, Jean-Baptiste Alayrac, Johannes Balle, and George Toderici.
Improved lossy image compression with priming and spatially adaptive bit rates for recurrent
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4394–4402, 2017. URL https://arxiv.org/abs/1703.10114.

[14] Jacob Kamminga, Eyuel Ayele, Nirvana Meratnia, and Paul Havinga. Poaching detection
technologies—a survey. Sensors, 18(5):1474, 2018.

[15] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
[16] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-

device training under 256kb memory. Advances in Neural Information Processing Systems, 35:
22941–22954, 2022.

[17] Lisa Palmer. Hacking conservation, 2019.
[18] Oren Rippel and Lubomir Bourdev. Real-time adaptive image compression. In Proceedings of

the International Conference on Machine Learning (ICML), pages 2922–2930, 2017.
[19] William J Ripple and Robert L Beschta. Trophic cascades in yellowstone: the first 15 years

after wolf reintroduction. Biological Conservation, 145(1):205–213, 2012.
[20] Jorma Rissanen and Glen Langdon. Universal modeling and coding. IEEE Transactions on

Information Theory, 27(1):12–23, 1981.
[21] Shibani Santurkar, David Budden, and Nir Shavit. Generative compression. arXiv preprint

arXiv:1703.01467, 2017. URL https://arxiv.org/abs/1703.01467.

5

https://lila.science/datasets/snapshot-kgalagadi
https://www.waveshare.com/wiki/SX1262_868M_LoRa_HAT
https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1703.10114
https://arxiv.org/abs/1703.01467


[22] Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

[23] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Sigurd Sønderby, and Ole Winther. Ladder
variational autoencoders. In Advances in Neural Information Processing Systems (NeurIPS),
pages 3738–3746, 2016.

[24] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compression
with compressive autoencoders. International Conference on Learning Representations (ICLR),
2017. URL https://arxiv.org/abs/1703.00395.

[25] George Toderici, Sean M. O’Malley, Sung Jin Hwang, Damien Vincent, David Minnen, Shumeet
Baluja, Michele Covell, and Rahul Sukthankar. Full resolution image compression with recurrent
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5306–5314, 2017. doi: 10.1109/CVPR.2017.577.

[26] Franck Trolliet, Cédric Vermeulen, Marie-Claude Huynen, and Alain Hambuckers. Use of cam-
era traps for wildlife studies: a review. Biotechnologie, Agronomie, Société et Environnement,
18(3), 2014.

[27] Martin J. Wainwright and Eero P. Simoncelli. Scale mixtures of gaussians and the statistics of
natural images. Advances in Neural Information Processing Systems (NeurIPS), 12:855–861,
2000.

[28] Lei Zhou, Chunlei Cai, Yue Gao, Sanbao Su, and Junmin Wu. Variational autoencoder for low
bit-rate image compression. In Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pages 2617–2620, 2018.

6

https://arxiv.org/abs/1703.00395

	Introduction
	Related Work
	Methods
	Experiments
	Conclusion

