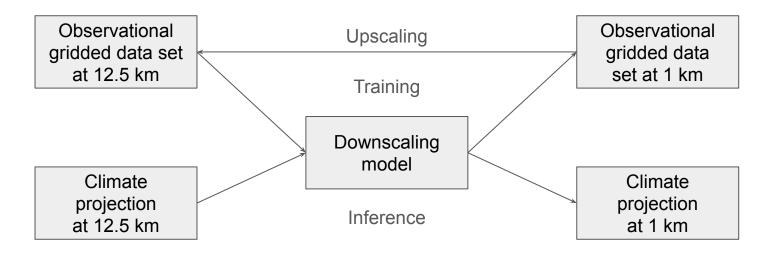
Downscaling climate projections to 1 km with single-image super resolution

Petr Košťál, Pavel Kordík, Ondřej Podsztavek

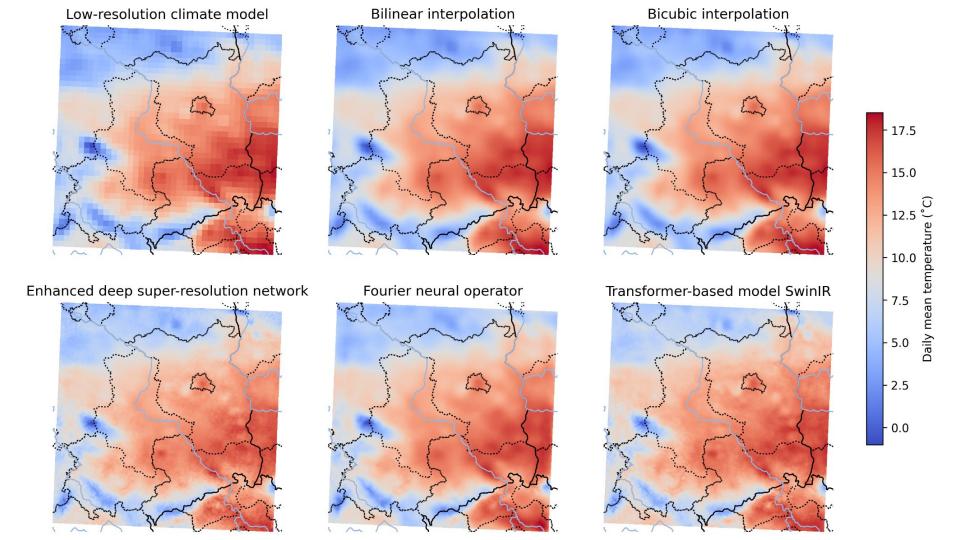


Problem

- High-resolution climate projections are essential for local decision-making.
- For example, assessment of urban heat islands or flood risks.
- However, available climate projections have low spatial resolution (e.g. 12.5 km), which limits their usability.

Single-image super resolution

- We leverage single-image super-resolution models to downscale climate projections from 12.5 km to 1-km resolution.
- Since we do not have high-resolution climate projections, we train models on a high-resolution observational gridded data set.



Evaluation with climate indicators

- We lack ground-truth high-resolution climate projections.
- We evaluate climate indicators computed at weather station locations.
- In our experiment, for daily mean temperature, we used:
 - o annual mean of daily mean temperature,
 - annual growing degree days,
 - o annual cooling degree days,
 - o annual heating degree days.

Results: RMSE of climate indicators on the test period

Method	Annual mean of daily mean temperature (K)	Annual growing degree days (K days)	Annual cooling degree days (K days)	Annual heating degree days (K days)
Low-resolution climate model	0.88	258.58	31.30	261.00
Bilinear interpolation	0.88	256.77	30.23	265.38
Bicubic interpolation	0.87	253.69	30.34	260.30
Enhanced deep super-resolution network	0.78	241.56	30.84	233.54
Fourier neural operator	0.82	250.92	30.80	243.84
Transformer-based model SwinIR	0.77	241.30	31.02	227.90

Conclusions

- Single-image super-resolution models can downscale climate projections without increasing the error.
- Future work:
 - Assess spatial properties.
 - Quantification of predictive uncertainty.
 - Explore other climate variables.
 - Incorporate auxiliary data.
 - Experiment with diffusion models and generative adversarial nets (GANs).