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Abstract

Automated monitoring of marine mammals in the St. Lawrence Estuary faces
extreme challenges: calls span low-frequency moans to ultrasonic clicks, often
overlap, and are embedded in variable anthropogenic and environmental noise. We
introduce a multi-modal, attention-guided framework that first segments spectro-
grams to generate soft masks of biologically relevant energy and then fuses these
masks with the raw inputs for multi-band, denoised classification. Image and mask
embeddings are integrated via mid-level fusion, enabling the model to focus on
salient spectrogram regions while preserving global context. Using real-world
recordings from the Saguenay–St. Lawrence Marine Park Research Station in
Canada, we demonstrate that segmentation-driven attention and mid-level fusion
improve signal discrimination, reduce false positive detections, and produce reliable
representations for operational marine mammal monitoring across diverse envi-
ronmental conditions and signal-to-noise ratios. By integrating attention-guided
denoising with biodiversity-oriented evaluation metrics, our framework transforms
raw hydrophone data streams into robust, operationally actionable presence sig-
nals, thereby supporting marine biodiversity conservation and climate-adaptation
monitoring initiatives.

1 Introduction

The St. Lawrence Estuary is an acoustic habitat where protected marine mammal species must
maintain essential biological functions, communication, navigation, and foraging, in the presence
of increasing anthropogenic noise. Ship noise can mask calls and echolocation, disrupt essential
behavioral sequences, and induce physiological stress[20] with ecosystem-level consequences when
behaviors change over space and time. This acoustic degradation, exacerbated by the effects of
climate change on marine soundscapes and species distributions, creates time-critical monitoring
challenges that require robust automated detection systems capable of real-time assessment of species
presence, behavioral state changes, and climate-driven population dynamics to inform adaptive
conservation interventions. [22, 23]

These impacts have motivated concrete mitigation and policy efforts (e.g., quieter ship design,
operational routing, and speed management) and targeted recovery planning for St. Lawrence species
such as beluga. Our focus in this work is to turn raw hydrophone data into reliable presence signals
that support biodiversity protection, monitoring, and adaptation actions in this sensitive region. Our
contributions: First, we propose an end-to-end multi-step framework that segments spectrograms to
produce pseudo attention masks and fuses mask and spectrogram embeddings to guide denoising and
enhance biologically relevant signal recognition. Then we evaluate real-world recordings collected by
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Figure 1: Saguenay–St. Lawrence Marine Park (SSLMP) representation.

the Saguenay–St. Lawrence Marine Park Research Station, emphasizing cross-season robustness and
per-class precision, with control for empty signals. Finally, we demonstrate that segmentation-driven
attention and mid-level fusion improve precision recall, stabilize detection thresholds, and produce
robust field-ready representations for underwater bioacoustic monitoring.

2 Dataset description and problem setup

Dataset description We used an exclusive subset of the Saguenay - St. Lawrence Marine Park
(SSLMP) monitoring dataset [7], a long-term multimodal collection designed to study the impact
of maritime traffic on endangered marine mammals. Data come from two complementary sources:
bottom-moored hydrophones (passive acoustic monitoring, PAM) that provide ∼ 1,500 hours of
continuous recordings and shore-based surveys (LBS) that provide ∼ 500 hours of visual observations
over four years. These data streams are synchronized, producing species-level annotations in [7] for
belugas (Delphinapterus leucas) and harbour porpoises (Phocoena phocoena). Our subset consists
of ∼10,000 five-minute segments manually annotated [7] with species presence and sound types
(beluga whistles and clicks, 10–100 kHz; porpoise narrowband clicks, 50–150 kHz). The recordings
also capture vessel noise and other natural and anthropogenic sounds spanning 10 Hz–150 kHz. The
dataset is challenging due to environmental noise, overlapping calls, and domain shifts across seasons,
sites, and sensors, making it a unique benchmark for machine learning in underwater bioacoustics.

Problem setup We work with a dataset of raw marine acoustic recordings containing vocalizations
from multiple species. Our goal is to automatically recognize marine mammal vocalizations in
noisy recordings, addressing challenges such as variable signal-to-noise ratios, overlapping calls, and
environmental noise. We explore both multi-label and multi-class classification, before introducing
attention mask driven framework using spectrogram-based representations of the audio data.
Formulation Formally, let x(t) denote a raw acoustic waveform. The signal is first transformed into
a spectrogram via a time-frequency representation (STFT). A segmentation model Mseg predicts a
pseudo-attention mask highlighting relevant spectro-temporal regions. Both the spectrogram and the
mask are then encoded into embeddings, which are fused to guide denoising and enhance biologically
relevant signals. Finally, a classifier C maps the fused representation to the probabilities of the target
class. Formally, the pipeline is:

ŷ = C
(

Fuse
(
Espec

(
T (x(t))

)
, Emask

(
Mseg(T (x(t)))

)))
, ŷ ∈ RK (1)

where T is the STFT, Espec and Emask are the embedding functions for the spectrogram and mask,
respectively, and Fuse(·, ·) denotes the mid-level embedding fusion.

3 Mask-driven classification method

Classification task The marine mammal acoustic signals were first analyzed by supervised classifi-
cation in spectrogram representations capturing species-specific signatures. Two paradigms were
considered. multi-class classification: and multi-label classification. We evaluated convolutional,
modern CNN, and transformer-based architectures using standard metrics, applying ImageNet-based
transfer learning [14]. Multi-class classification proved more suitable for our dataset, while noise and
artifacts still limit the detection of subtle spectro-temporal patterns (see Fig. 6 and Tab. 3), motivating
the denoising framework introduced next.
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3.1 Automatic acoustic denoising framework

These difficulties discussed above can be largely attributed to noise that distorts the essential fine-
grained temporal and spectral structures. To overcome these challenges, we introduce an automatic
acoustic denoising framework designed to preprocess raw audio recordings prior to classification.
This framework integrates signal transformation [2], mask-based denoising [1], and classification
into a unified pipeline, thus improving robustness by clarifying relevant acoustic patterns through
"pseudo-attention" masks and attention mechanisms.
Framework description Raw audio signals are first converted into time–frequency representations
using the STFT. This operation decomposes the signal into overlapping windows. The resulting
spectrograms are then used as the primary visual input for the denoising and classification stages.
We apply a denoising methodology inspired by few-shot learning and leveraging the capabilities of
models such as DeepLabV3 [21]. A substantial training set is constructed to train a segmentation
model that generates "pseudo-attention" masks over spectrograms. These masks are then leveraged
in a multi-step fusion framework, where both the raw spectrogram and its corresponding mask
embedding are jointly encoded. The fused representation guides the network to focus on informative
regions, effectively denoising the signal and enhancing underwater bioacoustic recognition. This
approach is inspired by previous work in the audio denoising domain, notably the study on bird
sounds [1], which demonstrated the effectiveness of deep visual denoising techniques in improving
classification performance.

Figure 2: End-to-end framework for automatic denoising and classification from raw audio.

Audio transformation and Semi-automatic mask labelisation. The raw audio recordings are
first converted to spectrogram representations using standard time-frequency analysis techniques.
The spectrograms serve as the primary input for the subsequent denoising and classification stages.
Once the spectrogram has been obtained, in order to efficiently annotate large collections, we adopt
a semi-automatic labeling approach. First, an initial set of candidate regions is generated using
signal processing techniques, such as edge detection and adaptive thresholding, to highlight potential
patterns of interest. This allows us to identify and isolate prominent acoustic features. These
preliminary masks are then presented to the annotator through an interactive interface, allowing
manual refinement and correction, resulting in a high-quality training set (200 images) from which
the denoising model can generalize mask predictions across the dataset.
Few-shot learning for denoising. Leveraging the high quality mammal sound pattern masks, we
train a denoising model using a few-shot learning strategy to generalize from limited annotations.
Architectures such as DeepLabV3 capture both fine-grained time–frequency structures and broader
contextual patterns to distinguish signal from noise. In addition, we apply image horizontal flip
augmentation to double the size of the training dataset. Once trained, the model predicts masks across
the full dataset, enabling scalable denoising without exhaustive manual labeling.
Mask-guided model for classification. After training our segmentation model on spectrograms,
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we obtain pseudo-attention masks that highlight regions most likely to contain relevant acoustic
events. So, we threat it as an auxiliary representation [13]. Intuitively, the mask acts as a form
of attention-based denoising: it emphasizes salient regions of the spectrogram while suppressing
background noise and irrelevant structures. Concretely, we design a fusion framework with two
parallel encoding branches: Spectrogram encoder, a ResNet50 or audio transformer backbone
processes the raw spectrogram into a high-level representation. Mask encoder, a lightweight CNN
encodes the corresponding segmentation mask into a compact embedding. Both embeddings are
projected into a common latent space and then fused at an intermediate stage (mid-fusion). Fusion
can be realized either by simple concatenation or through a cross-modal attention mechanism, where
the spectrogram embedding serves as the query and the mask embedding provides keys and values.
This enables the network to adaptively weigh spectro-temporal regions conditioned on the mask.Then,
the fused representation is passed to a classification head, producing multi-class predictions. This
design preserves a residual path from the spectrogram encoder to the classifier, ensuring that the
system does not overly rely on potentially noisy masks while still exploiting their guidance signal. In
doing so, we approximate the role of human attention in auditory scene analysis: focusing on the
most informative patterns while filtering out distracting background components.

4 Results

4.1 Denoising process for marine mammals recognition

Model Accuracy F1 macro
ResNet50 0.588 0.562
ConvNeXt 0.625 0.591
ViT 0.788 0.787
Multi-step (Gen. masks) 0.837 0.816
Multi-step (HQ masks) 0.897 0.890

Table 1: Comparison of baseline image-only models and
the proposed multi-step approach with cross-attention using
either generated or a subset with high-quality masks.

To evaluate the contribution of the
proposed multi-step denoising frame-
work, we compared it with stan-
dard image-only classification mod-
els trained on the same data set. Ta-
ble 1 reports the accuracy and macro-
F1 in ResNet50[11], ConvNeXt[10],
ViT[12, 8], and our cross-attention fu-
sion model using generated or high-
quality (HQ) segmentation masks. In
general, the results show that the
multi-step approach substantially outperforms all baselines. Although ViT already provides strong
performance among unimodal models (78. 8% accuracy), suggesting that attention mechanisms are
better suited to model long-range temporal and spectral dependencies, the use of generated masks
with cross-attention further improves the results to 83. 7%. The best performance is obtained with HQ
masks (89.7% accuracy, 89.0% macro-F1), highlighting the benefit of leveraging accurate structural
priors for denoising. This indicates that cross-attention enables the model to effectively exploit mask
information to focus on relevant acoustic structures, and helps for the robustness of the classification.

4.2 Ablation study of fusion methods

Fus. strategy High-Quality Masks Generated Masks

Train Loss Train Acc. Val. Loss Val. Acc. Train Loss Train Acc. Val. Loss Val. Acc.

Concat 0.370 0.887 0.559 0.762 0.365 0.877 0.678 0.825
Gated 0.401 0.868 0.792 0.713 0.472 0.833 0.857 0.762
xAttn 0.253 0.912 0.406 0.900 0.427 0.843 0.695 0.838

Table 2: Comparison of mid-fusion strategies on the validation set using either high-quality (HQ) or generated
(Gen.) masks. Cross-attention consistently achieves the best validation accuracy. (Training with RTX A100
GPU ∼ 15min per method)

We conducted an ablation study on the fusion strategy, comparing simple concatenation, gated residual
fusion, and cross-attention; the results (Table 2) show that cross-attention achieves the best validation
accuracy. These results suggest that, while simple and gated fusion capture some complementary
information between the image and the mask but is more efficient with generated masks, introducing
cross-attention enables more effective interaction between representations.

4



5 Conclusion

We presented a multi-step segmentation-based framework that improves the classification of marine
mammal vocalizations using real-world data. While the use of STFT representations introduces
resolution trade-offs and some information loss, the framework establishes a solid basis for robust
and trustworthy ecological monitoring. Future work will address these limitations by exploring richer
acoustic representations, improving attention mechanisms, and integrating predictive uncertainty.
Overall, our results demonstrate that deep learning models can extract reliable presence signals
that directly support species monitoring and conservation, illustrating how AI techniques can be
effectively harnessed for scientific and climate-relevant ocean studies.
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6 Annexe

Figure 3: Saguenay–St. Lawrence Marine Park (SSLMP) representation.

Spectrogram
Raw waveform x(t) → STFT

Image Encoder

Image Embedding
zi ∈ Rd

Pseudo Mask
From segmentation model

Mask Encoder

Mask Embedding
zm ∈ Rd

Cross-Attention
[zi, zm] → zf

Classifier Head
(MLP / Fully Connected)

Prediction
Multi-class / Multi-label output

V
Q

K

Figure 4: Architecture of the proposed model with two encoding branches and mid-fusion by cross-
attention
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Figure 5: Spectrogram (left), high-quality segmentation mask (middle), and generated pseudo-
attention mask (right) for a recording of porpoise clicks.

Table 3: Performance comparison between multi-label and multi-class training approaches before
multi-modal approach. For multiclass (one label per sample): hamming loss is the average number of
incorrect predictions per sample. For multilabel (multiple labels per sample): it is the average number of label
errors per sample, divided by the number of labels. This metric is not comparable inter training method

Metric ConvNeXt-Tiny ResNet50 Deit-Distilled
Multi-Label Multi-Class Multi-Label Multi-Class Multi-Label Multi-Class

Hamming Loss 0.1693 0.3310 0.1206 0.3466 0.1427 0.3674
Perfect Accuracy 58.17% 66.90% 66.34% 65.34% 62.45% 63.26%

Whistle
Precision 0.806 0.61 0.745 0.60 0.730 0.64
Recall 0.891 0.82 0.816 0.77 0.745 0.71
F1-Score 0.847 0.70 0.779 0.68 0.737 0.67

Beluga Click
Precision 0.672 0.68 0.968 0.63 0.926 0.71
Recall 0.996 0.77 0.921 0.57 0.939 0.50
F1-Score 0.802 0.72 0.944 0.60 0.932 0.59

Porpoise Click
Precision 0.868 0.68 0.966 0.67 0.925 0.69
Recall 0.985 0.73 0.957 0.53 0.979 0.48
F1-Score 0.922 0.71 0.961 0.59 0.951 0.57
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(a) Multi-labels trained classifiers performances.

(b) Multi-classes trained classifiers performances.

Figure 6: Comparison of classifiers trained with multi-labels (top row) vs. multi-classes ap-
proaches(bottom row) before integration of attention masks. Values are normalized by the size
of the test set and represent the percentage of well classified labels.
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