Machine Learning Discovery
of Regional and Social
Disparities 1n Electric Vehicle

Charging Reliability

Yifan Liu, Lindsey Snyder, Omar l. Asensio

Georgia Institute of Technology

. s\,
HM Microsoft }i::r.‘NEURA NNNNNNNNNNNN
B Azure -;.i.E‘PROCESSING SYSTEMS
et




Why EV charging reliability matters

2022 U.S. GHG EMISSIONS

49% Light Duty Vehicles
P g ty

“Frustrating. Slow. Tried 4 different
chargers with no other cars charging.”
- Deschutes County, OR

12%

— 21% Medium & Heavy
Vehicles (Trucks & Buses)

— 10% Off Road Vehicles
and Equipment

e — 2% Rail
‘ 4% Maritime*
% 11% Aviation
4% Other (Pipeline/Lubricants)

"All three chargers are damaged. Car
does not charge.” - Harnett County, NC

* Aviation and marine include emissions from international aviation and
maritime transport. Military excluded except for domestic aviation.

Source: U.S. Department of Transportation (2024) Charging infrastructure is more cost-effective in promoting EV adoption (Li et al., 2017; Springel et al., 2021)

Challenges for AI/ML discovery

« Current methods (Asensio et al., 2020; Yu et al., 2025) for assessing reliability at a large scale:
o expensive expert labelling and unbalanced classes in the dataset;
o lack the accuracy needed for large-scale inference;
o fail to capture regional and social disparities in consumer-reported experiences.



Our approach: measuring reliability and disparity

4y 2%

Review level Station level County level

« Develops a zero- and few-shot * Reliability score represents the Combines reliability detection with
chain-of-thought learning share of reviews without geographic disparity indices (i.e.,
pipeline to detect charging reliability issues. Shannon Evenness Index) to
reliability from 838,785 measure intra-county variation in
consumer reviews. reliability.

* Integrates expert feedback into
an iterative error-analysis loop — 1 1
to optimize prompts (Wei et al., Re= 5. 2iec (’1'_1' 2ter, R”)
2022; Kim et al., 2025) and
systematically reduce Type |
and Type Il errors, resulting in E.
high detection performance
(F1 =0.97).
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Model performance:
incrementally optimized prompts outperform ClimateBERT baseline models

Table 1: Model performance and efficiency for detecting charging reliability issues in user reviews

. . I I
Model Input Accuracy F1 Score  Training ?rf(fr .Izgzr
% (s.d.) (s.d.) cost cate cate
Few/zero-shot models with incrementally optimized CoT prompts D Model Performance
GPT-5 few-shot instructi 97.10% 096 0 21%  34% : , .
[gpt-5-2025-08-07) rare (1.66)  (0.024) ° ° 97.9% accuracy achieved through few-shot chain-of-thought learning
+ examples
+ counterexamples 94.9% reduction in false positives through expert refinement
1.1% 3.4%
GPT-4 few-shot . . 97.90% 0.97 o . . . .
[gpt -4 turbo-2024-04-09] Torcton 1.60)  (0.018) 0 . ggfo ) 5.‘(3;% ) 64.3% reduction in false negatives compared to baseline approaches
+ examples
+ counterexamples
GPT4 few-shot instruction 951‘30% 00{.)956 0 G.(Fi% S(i%
4 - -04- 45 .01
[gpt-4-turbo-2024-04-09] " -0 (1.45) ( ) 0.2%) 7.2%)
+ examples
GPT-4 zero-shot 92.60% 091 N
[gpt-4-turbo-2024-04-09] instruction (3.17) (0.037)
&P e + definitions 20.3%)  6.1%)
GPT-4 zero-shot 90.80% 0.89 0 21.2%  9.5%
[gpt-4-turbo-2024-04-09] instruction (2.44) (0.034) (init)  (init)

Fine-tuned models (with significantly higher labeling costs) for reference

$$$
90.90% 0.90 expert

ClimateBERT fine-tuned Training set: 4,000 (1.18) 0.012) label- 10.7%  7.3%
ing
$$%
GPT-4o fine-tuned . . . 97.30% 0.97 expert
[gpt-40-2024-08-06) Training set: 4,000 @.11) (0.027) lallbel- 2.4% 3.0%
ing

* The accuracies and F1 scores are computed for the reliability_issue label using the same test set of 1,000
observations, with ground truth determined by expert human votes. We assume 25M input and 1M output tokens
for 1M reviews for the estimation of inference costs in the first model.



Widespread charging reliability 1ssues across U.S. counties

5%

1,653 Counties

Low Reliability: average reliability below 0.80 (70th percentile
threshold)

VAR
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Key takeaways and next steps

High Accuracy, Low Cost Nationwide Reliability Gaps Charging Deserts and Equity
Few-shot chain-of-thought model achieves 97.9% Over 1,650 counties show low reliability, affecting "Charging deserts" expose critical infrastructure
accuracy (F1 = 0.97), dramatically outperforming approximately 300 million residents. These gaps are inequities, causing wildly inconsistent charging
prior work at a fraction of the cost. concentrated in urban hubs and major EV corridors experiences within the same geographic area.
Expert-guided refinement cuts false positives by where charging demand is highest. These disparities call for performance-based EV
94.9% and false negatives by 64.3%. charging policies.

Future Directions

- Integration into causal inference studies examining factors driving charging reliability
- Development of predictive models for charging infrastructure planning

«  Application to policy evaluation and performance-based incentive design



https://gamma.app/?utm_source=made-with-gamma
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