Machine learning discovery of regional and social disparities in
electric vehicle charging reliability with GPT

Why EV charging reliability matters?

« Transportation is the second-largest source of global emissions and the top
source in many developed countries

 Electrifying vehicles is critical to decarbonization, and expanding reliable
charging infrastructure is essential for EV adoption (Li et al., 2020).

« However, charging failures have been documented across the U.S.,
Europe, and Asia (Rempel et al., 2024, Liu et al, 2023; Asensio et al., 2020).

 Machine learning has emerged as a key strategy for charging management,
including algorithm-based decision-making, load balancing, and demand
forecasting (Yaghoubi et al., 2024).

Challenges for ML/AIl discovery

* Prior methods for assessing charger reliability, most of which rely on
citizen-generated data and expensive expert annotations, lack the detection
accuracy required for large-scale inference.

« Current methods also fail to capture regional and social disparities in
consumer-reported reliability.

Our approach to measuring EV charging
reliability and disparity

* Review level: develops a zero- and few-shot chain-of-thought
learning pipeline to detect charging reliability from 838,785 consumer
reviews; integrates expert-guided prompt refinement to reduce Type |
and Il errors, achieving high detection accuracy (F1 = 0.97).

« Station level: reliability score represents the share of reviews without
reliability issues.

« County level: combines reliability detection with geographic disparity
indices (i.e., Shannon Evenness Index) to measure intra-county
variation in reliability.
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Deschutes County, OR

“All three chargers are damaged.
Car does not charge.”

“Downloaded the new app
and tried to charge using the
app, but screen got stuck on”

Al alignment: expert

prompts with GPT4/5 outperform popular

models such as ClimateBERT
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U.S. county classification by EV charging reliability and disparity (2012—2024)
Takeaways

* High accuracy, low cost

Table 1: Model performance and efficiency for detecting charging reliability issues in user reviews
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Few/zero-shot models with incrementally optimized CoT prompts
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$$$
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* The accuracies and F1 scores are computed for the reliability_issue label using the same test set of 1,000
observations, with ground truth determined by expert human votes. We assume 25M input and 1M output tokens

for 1M reviews for the estimation of inference costs in the first model.
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“Frustrating Slow.. tried 4 different chargers with no
other cars charging.”

Harnett County, NC

High Reliability and Low
Disparity 583 counties

High Reliability but High
Disparity 125 counties

Low Reliability

No Data

EV Corridor- Pending
—— EV Corridor- Ready

1,653 counties

* |ow reliability stations
® high reliability stations

“Low Reliability” is an average
reliability less than 0.80
(70% percentile reliability)

“Low Disparity” is less than
0.40, meaning a lower
diversity of reliability scores
in the county.

o Few-shot CoT model hits 97.9% accuracy (F1 = 0.97), outperforming prior work at a
fraction of the cost.

o Expert-guided prompt refinement cuts false positives by 94.9% and false negatives
by 64.3%.

 Widespread reliability gaps nationwide

o 1,650+ counties show low reliability, affecting 300 million residents, concentrated in
urban hubs and EV corridors.

e Charging disparity and policy implications

o “Charging deserts” expose inequities, causing inconsistent charging experience
o Calling for performance-based EV charging policies.
Next steps: Integration into causal inference and prediction studies in electric mobility.
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