
Bridging the Energy Data Gap
A novel machine learning approach transforming utility invoices into granular hourly 
energy forecasts for sustainable operations. 

Figure 1. Three-step framework for monthly to hourly energy forecasting.

Our framework transforms monthly utility invoices into accurate hourly energy 
forecasts. By learning hourly patterns from 50% of 351 industrial sites with hourly 
meters, we accurately predict hourly consumption for the remaining 50% using only 
their monthly invoices, achieving 30% better accuracy than baseline methods for 1-3 
month ahead predictions. This enables carbon accounting, demand response, and 
renewable integration - without requiring comprehensive metering infrastructure.

Methodology
Our framework uses machine learning to turn monthly utility bills into hourly energy 
forecasts. We do this by learning hourly usage patterns from facilities that already have 
hourly meters, then applying these patterns to facilities with only monthly bills. Our 
Bayesian disaggregation approach incorporates day-of-week variations and facility-
specific characteristics through cluster-aware template mixing, enabling robust 
predictions across diverse industrial settings.

1. Step 1: Match facilities that have both monthly bills and hourly meters (175 sites) to 
create a training dataset of monthly-to-hourly relationships

2. Step 2: Apply ML models (TabPFN) to forecast 1-3 months ahead of monthly totals 
for all facilities

3. Step 3: Use Bayesian disaggregation to convert these monthly forecasts into hourly 
predictions by learning patterns from similar facilities

Results
When converting monthly bills to hourly patterns across 176/351 facilities, our 
Bayesian hourly disaggregation method combined with ML monthly forecasting 
achieves the lowest normalized MAE compared to other approaches (28~30% 
reduction over uniform baseline).

Our method successfully captures daily peaks and valleys, weekday-weekend variations, 
and facility-specific characteristics that simpler approaches miss. This accurate pattern 
capture across diverse facility types is crucial for applications like demand response 
program participation and renewable energy integration planning.

Figure 2. Hourly load disaggregation performance comparing actual consumption (black) against four methods for three 

representative facilities. 

Technical Validation
Our framework involves two key prediction tasks where we evaluated performance and 
compared different approaches:

Monthly Forecasting (Step 1) We compared different ML models for predicting 
monthly totals:

Table 1. Monthly Forecasting Performance Comparison. Values show Mean Absolute Error (MAE) in MWh. 

TabPFN achieves stable 65-68 MWh error across all horizons, while baseline degrades 
sharply from 50 to 128 MWh, demonstrating superior long-range forecasting capability.

Hourly Disaggregation (Step 2-3) We compared our method against standard 
approaches for converting monthly data to hourly predictions:

• Uniform Distribution: Spreads monthly total equally across all hours
• Template Scaling: Uses average historical patterns but lacks facility-specific 
adaptation
• Cluster-Based Grouping: Groups similar facilities and applies shared patterns
• Our Bayesian Method: Automatically learns and adapts to facility-specific patterns

Figure 2 demonstrates performance across three representative facilities. Our Bayesian 
approach achieves competitive performance with cluster-based methods while 
substantially outperforming template and uniform baselines. For monthly consumption 
forecasting 1-3 months ahead, our Enhanced Dirichlet Bayesian method reduces mean 
absolute error by 28-30% compared to baseline methods across all horizons (Table 2).

Table  2: Performance comparison of disaggregation models across forecasting scenarios and horizons. Values shown are MAE. 

Key Innovations
Our approach solves a fundamental challenge in energy forecasting: generating high-
resolution predictions from limited data. Key innovations include:

• Novel temporal bridging methodology combining sparse hourly data with widespread 
monthly invoices

• Bayesian disaggregation framework for going from monthly to hourly resolution
• Adaptive clustering to improve facility-specific load prediction

• Scalable solution requiring only existing utility invoices

What’s next?
Building on this demonstration with Portuguese industrial facilities, here are the next 
steps:

• Extending the method to handle sub-hourly predictions for more granular grid 
balancing

• Incorporating external factors like weather patterns and local grid conditions
• Developing automated facility clustering techniques to improve pattern learning

• Deployment in diverse geographic regions with limited metering infrastructure

Climate Impact
Our methodology enables immediate climate action through granular energy 
insights, supporting the urgent transition to sustainable operations.

• Helps grid operators predict stability impacts of new industrial loads through 
accurate hourly consumption forecasts

• Provides real-time carbon accounting vs. 3-month delayed insights

• Unlocks precise solar/storage sizing by forecasting facility's hourly energy 
patterns without expensive metering

This innovation democratizes access to hourly energy forecasting, making grid-
scale decarbonization planning accessible to facilities worldwide using only existing 
utility data. With demonstrated accuracy, our approach removes a critical barrier to 
climate action while requiring minimal infrastructure investment.
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