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Abstract

Large-scale commercial facilities face significant challenges in sustainability plan-
ning due to limited granular energy consumption data. While monthly energy data
exists for all facilities in the form of utility invoices, hourly or better resolution
is often available for only a subset of locations. This paper presents a machine
learning framework that synthesizes low-resolution temporal data to generate high
resolution hourly energy forecasts. Our approach combines monthly data from
351 facilities with hourly patterns from 175 instrumented sites using a Bayesian
disaggregation model (remaining sites were used as test sites). The system achieves
1-3 month ahead hourly forecasts with a 30% reduction in MAE compared to the
utility-bill baseline. This could enable applications in carbon accounting, demand
response, and renewable integration planning. As commercial loads continue to
grow as a percentage of total grid consumption, forecasting their unique consump-
tion patterns becomes increasingly valuable for grid reliability and efficiency. Grid
operators could adopt this methodology to improve the accuracy of their load
forecasts, making the entire grid more efficient and reliable.

1 Introduction

Insight into hourly electricity usage is becoming increasingly important. It is necessary for carbon
accounting (how much are my operations polluting?), demand response participation (how do I know
how much load I can promise to curtail?), and renewable energy integration planning (how much will
rooftop solar lower my net peak load, allowing me to save on capacity costs?). It may also be useful
for Grid Operators, who already incorporate large loads in their Load Forecasts[6].

As has often been the case in recent years, 2024 was by far the hottest year since records began in
1850[1]. Industrial electrification has been seen as a key component of de-carbonization. According
to the IEA [2], electricity’s share of total energy consumption must rise from 20% to 27% by 2030
to stay on track for Net Zero by 2050. This means that industrial processes with individually large
loads will become an increasing large percentage of electricity grids’ load. For example, H2 Steel is
connecting a 800MW electrolyzer to the grid in Sweden. [3]. Unfortunately, it’s been delayed due
in part to the Grid Operator having concerns about grid stability[4]. This could be mitigated if we
could have more confidence in hourly electricity usage. Other examples include buildings serving EV
charging fleets, desalination, warehouses with large HVAC systems, and indoor agriculture.
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Figure 1: The proposed 3-step methodology

It’s often difficult to measure high resolution electricity that a facility is using [5]. If the instru-
mentation technology (Smart Meters, Power Quality Monitors, and Current Transformers) are not
installed when the facility is constructed, adding them after-the-fact will often require expensive
outages along with permitting, utility coordination, equipment procurement, and installation hurdles.
Sometimes there are technical barriers like limited panel space in electrical rooms that make adding
new hardware prohibitively difficult. When installed, they may be installed at the incorrect point such
that not all electricity use is measured.

In this paper, we aim to demonstrate that invoices are all you need for at least some sites. While not
all industrial sites have Power Quality Monitors and Smart Meters, all electricity customers do have
an invoice. We can take the invoices and leverage a small subset of accurately instrumented industrial
sites to go from 2-3 month lagged invoices with a monthly granularity to forward-looking forecasts at
an hourly granularity. The methods we present here perform well with limited data– 351 sites with
invoices and 50% (175) sites with accurate hourly data and with loads with differing load profiles.
Our key innovation is demonstrating that hourly data from sparse sites can effectively disaggregate
monthly invoices for the remaining sites, solving a major roadblock for operational planning. Other
research has tried this before, but then often rely on an additional level of information like time of
use as their base [5]. Disaggregation has previously been used to estimate the efficiency of residential
solar[7], but even here the method relies on clear diurnal and nocturnal signals which may not always
be available for pure building loads.

2 Methods

We use the Electricity / ECL[8] dataset to demonstrate our technique. This has 15 minute data on 370
Portuguese Industrial Customers from 2012-2015. We removed 19 sites for data reliability issues.
Figure 1 describes our method. We generate synthetic invoices by aggregating all the customers at a
monthly level. We then forecast invoices 3 months forward with standard ML techniques. We use
hourly data from a subset of sites to build a disaggregation model that disaggregates monthly invoice
data into hourly data. We then apply the disaggregation model to the values forecasted by the invoice.

2.1 Forecasting Monthly Electricity Usage

This forecasting problem differs from many forecasting problems in the literature in that it is "small"
data. We only have 37 observations (months) for each of 351 separate industrial customers. As such,
we rely on methods that are either (1) efficient on small data or (2) take into account that these 351
time series are related to each other.

We use expanding window cross-validation with 24-month minimum training and 3-month forecast
horizons, creating temporally-ordered splits that prevent data leakage. This approach enables robust
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evaluation of multi-step forecasting performance while preventing data leakage by ensuring that all
training data precedes the test period.

Table 1 shows the results from the models that were most promising given those constraints. The
baseline was calculated by taking the invoices lagged horizon months as the forecast.

Table 1: Model Performance Comparison Across Different Horizons

Model Horizon MAE RMSE MdAPE Model Horizon MAE RMSE MdAPE

Baseline
1 50 440 8.0

LightGBM[9]
1 69 481 9.2

2 99 921 13.7 2 69.2 479 9.1
3 128 1173 18.0 3 68.9 484 9.2

TabPFN2[10]
1 68 524 8.4

AutoGluon[11]
1 73 509 10

2 65 480 8.3 2 76 607 8.9
3 65 462 9.7 3 78 615 8.5

Notes: MAE = Mean Absolute Error (MWh per month); RMSE = Root Mean Squared Error; MdAPE =
Median Absolute Percentage Error. We prefer this over Mean because meters occassionally have 0 readings,
resulting in infinite MAPE. Lower values indicate better performance. Horizon refers to the months ahead
the forecast is. Often the most recent invoice available reflects data that is 2 to 3 months old, so forecasting
present or month-ahead usage requires forecasting 3 months out.

2.2 From Monthly Data to Hourly Data

We then disaggregate monthly electricity usage Ms,m to hourly intervals hs,m,i. Our preferred
method is via the bayesian probabilistic model specified below, as it extends itself nicely to future
work when we can add more metadata about the sites.

We evaluate four disaggregation approaches for allocating monthly consumption M across hourly
intervals hi. With only 351 sites having hourly data, a 50/50 split provides sufficient training data
(175 sites) while reserving enough test sites (176) to evaluate performance and it mirrors the real-
world conditions. The Uniform model distributes M evenly across all hours. The Template-based
model scales historical average hourly patterns by M . The Cluster-based model first groups sites by
monthly scale summary consumption features, then applies cluster-specific templates.

Finally, we propose an Dirichlet–Bayesian Disaggregation Model, which specifies Dirichlet priors
over hourly share vectors and incorporates three refinements: (1) robust prior estimation via trimmed
means, (2) day-of-week corrections for systematic weekday–weekend shifts, and (3) cluster-aware
template mixing for site-specific adaptation. Predictions are obtained through posterior Monte Carlo
sampling, yielding calibrated and uncertainty-aware load profiles. Technical details and mathematical
derivations are provided in Appendix A. Figure 2 presents examples of a few industrial sites (test set).
For disaggregation using baseline vs. forecasted monthly loads see Appendix B.

2.3 Applying Disaggregation to the Forecasts and Results

We then apply our model from section 2.2 to the best forecasts in section 2.1 (TabPFN). Table 2
presents our overall results for end to end process. For many use cases, the relevant Baseline is H3
Uniform Baseline as that represents only having utility bills but want to know our power usage now.
Our method sees a 30% reduction in MAE, with improvements across the board.

3 Conclusion
In this work, we’ve developed a method for understanding electricity usage using subsets of data that
many companies can acquire without comprehensive upgrades to their metering systems. This has
broad applicability across a variety of industries.

Beyond individual facilities, this methodology addresses grid-scale challenges. As industrial elec-
trification accelerates, grid operators need granular load forecasts without comprehensive metering.
Our approach of requiring only invoices and sparse instrumentation democratizes hourly energy
insights, enabling better demand response, renewable integration, and grid stability during the energy
transition. Another exciting direction is, given that we now have these forecasts of our load profile,
how can we strategically deploy Carbon Free Energy (CFE) in ways that free up capacity on the grid?
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Figure 2: Hourly load disaggregation performance for three UCI commercial sites comparing actual
consumption (black) against four disaggregation methods. Normalized mean absolute error (MAE)
shown in parentheses, with the Dirichlet-Bayesian and cluster approaches achieving lowest errors.

Table 2: Performance comparison of disaggregation models across forecasting scenarios and horizons

Model Baseline Forecast Actual
H1 H2 H3 H1 H2 H3 Observed

Uniform 178.8 185.7 189.3 174.2 176.7 178.3 157.6
Template-Scaled 152.4 160.6 164.9 159.2 160.1 159.1 145.6
Cluster-Based 132.2 143.6 150.7 131.4 133.5 134.0 112.7
Dirichlet-Bayesian 130.5 142.5 150.2 129.7 132.1 133.1 109.0

Note: H1, H2, H3 represent 1-, 2-, and 3-month ahead forecast horizons. Mean MAE across 1232 test
site-month pairs (176 x 7 rolling test windows) in kWh. Baseline uses lagged monthly totals, Forecast uses
ML predicted totals, and Actual uses observed monthly totals. Bold values indicate best performance in
each column. We choose MAE primarily because it is most relevant for use cases like Demand Response,
Integrated Resource Planning, etc.

For example, a Steel plant might be able to better understand the viability of installing solar or BTM
BESS. Companies will have a better idea of how much carbon they are emitting while they are
emitting it rather than being lagged by 3 months, leading to increased demand to offset that carbon.
Since our results reduce the MAE of our forecasts by 30%, even with this diverse, uninformative
dataset, we believe there will be a wide variety of potential applications. We expect errors will be
lower in most real-world applications, where there is both less heterogeneity in load behavior and
more informative features we can use to make our forecasts.
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A Appendix A: Enhanced Dirichlet–Bayesian Disaggregation Model

We denote the monthly total consumption for site s in month m as Ms,m, and the corresponding
hourly share vector as

ϕs,m = (ϕ1, . . . , ϕ24Dm
),

∑
i

ϕi = 1.

, where Dm is the number of days in that month.
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Our generative model specifies:

ϕs,m ∼ Dirichlet(κ ϕ̂s,m), hi,s,m = Ms,m · ϕi,

where ϕ̂s,m is an empirical Bayes prior constructed from historical reference patterns, and κ is a
concentration parameter governing dispersion.

Refinements. Three refinements are incorporated:

1. Robust prior estimation. The base prior ϕ̂ is estimated using trimmed means of reference
sites to mitigate sensitivity to outliers.

2. Day-of-week corrections. A multiplicative adjustment matrix Cdow modulates hourly
shares depending on weekday vs. weekend patterns:

ϕ̂
′
s,m = ϕ̂s,m ⊙Cdow,

followed by normalization.
3. Cluster-aware mixing. If site s belongs to cluster c(s), the effective prior is a convex

combination:
ϕ̂

′′
s,m = λϕ̂c(s),m + (1− λ)ϕ̂

′
s,m,

where λ is a mixing weight learned from validation data.

Posterior inference is performed via Monte Carlo sampling of ϕs,m, yielding uncertainty-quantified
predictions {hi,s,m} across hours.

B Appendix B: Sample hourly disaggregated graphs baseline vs. forecast

6



Figure 3a: Sample hourly disaggregation using the Bayesian model for a random test site MT_166.
The black solid line is the actual observed hourly load for the month of May 2014. And the blue
dotted line is the baseline monthly forecast (plot is for horizon H3, so the monthly baseline is the
actual monthly consumption from T-3 months.

Figure 3b: Sample hourly disaggregation using the Bayesian model for a random test site MT_166.
The black solid line is the actual observed hourly load for the month of May 2014. And the blue
dotted line is the ML monthly forecast from section 2.1 (plot is for horizon H3, so the ML forecasting
model was trained on data until T-3 months. And the monthly features that are used for the hourly
disaggregation model also respect the horizon limits.
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