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Abstract

Climate models are indispensable tools for projecting and understanding climate
change. Unfortunately, their computational demands severely limit the exploration
of diverse climate scenarios and the characterization of extreme events, hindering
informed policy decisions. While computationally efficient climate model emu-
lators offer a potential solution, they typically only provide monthly or annual
statistics. This paper introduces ClimForGe, a diffusion-based stochastic climate
emulator trained on CESM2 capable of efficiently sampling global, daily-scale
weather changes under realistic climate forcings. We demonstrate that our emulator
accurately reproduces both daily snapshots and long-term statistical properties of
temperature and precipitation, offering a powerful tool for rapid exploration and
characterization of extreme events in a changing climate.

1 Introduction

Climate models are crucial tools in modern climate analysis and policymaking; however, their high
computational demands make them slow and expensive to run, limiting our ability to explore diverse
climate scenarios and extreme weather events. To address these limitations, machine learning-based
emulators have emerged as an efficient alternative, leveraging existing data from climate and Earth
system models (ESMs). These emulators learn to capture the statistical characteristics of our climate,
enabling the generation of thousands of data samples in a fraction of the time required by traditional
models.

Some key approaches towards climate emulation include forcing-response emulators [9, 15, 17, 20]
and autoregressive atmospheric models [12, 18, 21, 22]. Other approaches include the use of
generative models such as GANs and diffusion models to perform temporal [2, 13] and spatial [1,
14, 19] super-resolution of ESM outputs. Recently, cBottle [3] demonstrated the ability of diffusion
models to generate high-resolution climate samples conditioned on sea surface temperature (SST).

Unfortunately, forcing-response emulators are typically limited to coarse temporal resolutions, mak-
ing them insufficient for accurately assessing future climate states at high resolution. Autoregressive
models, on the other hand, have struggled to produce climate responses under realistic forcing sce-
narios, particularly further into the future, and they additionally require lengthy rollouts to generate
long-term simulations. To address these issues, we introduce ClimForGe (Climate Force-response
Generator), a novel approach utilizing the successful EDM diffusion framework [10] to generate
global maps of precipitation and surface temperature at a daily resolution conditioned on CMIP6 forc-
ings. The forcings consist of various greenhouse gases and the incident shortwave radiation at the top
of the atmosphere (RSDT). ClimForGe is capable of efficient daily-scale, global forcing-response
climate emulation generating realistic responses to the unseen SSP245 scenarios, and accurately
reproducing the long-term statistics of the CESM2 climate model.



2 Related Works

Forcing-Response climate emulators have emerged as computationally efficient tools capable
of capturing the complex relationships between external forcings and climate responses typically
produced by Earth System Models (ESMs). ClimateBench [20] serves as a benchmark framework to
systematically evaluate these emulators, highlighting several critical challenges. A prominent issue is
accurately emulating non-linear precipitation responses, exacerbated by high-dimensional climate
data and limited training samples. Such constraints often result in coarse spatial resolutions, such as
1.875° x 2.5° reported in previous studies [9, 15, 20], and introduce substantial uncertainty that is
difficult to quantify. Furthermore, these existing approaches typically simplify the emulation task
to yearly or monthly timescales, an approach also prevalent in downscaling-emulator models like
ClimaX [16].

Autoregressive emulators represent another popular approach to climate emulation [4, 12, 18, 21, 22].
These models condition on an atmospheric snapshot (an initial condition) with specified forcings
and boundary conditions to subsequently predict the atmosphere at the next time step. However, a
notable drawback of the approach is its autoregressive nature requiring lengthy sequential rollouts for
generating future climate states. For example, the common resolution of 6 hours would require 14600
autoregressive iterations to simulate a climate state 10 years in the future. This causes them to be
computationally expensive and at risk of accumulating errors. Another limitation of autoregressive
models is their deterministic nature, which prevents them from capturing the uncertainty inherent in
ensemble-based models like ESMs which is a challenge shared by many deterministic emulators.

Generative climate modeling offers a powerful means of generating accurate atmospheric states
that faithfully capture both the chaotic, instantaneous spatial structure and the accurate reproduction
of long-term climate statistics. Among these, DiffESM [2] adopts a diffusion-based model similar
to ours, but diverges in its design as a temporal super-resolution emulator, generating realistic
climate samples conditioned on monthly averaged inputs. While an effective method for temporal
downscaling, its reliance on prior monthly outputs from conventional climate models inherently
limits its ability to explore different scenarios. Another notable work is cBottle [3], an atmospheric
emulator similar to [21, 22] but utilizing a diffusion framework. cBottle is comprised of two modules:
a coarse-generation module, which produces climate states conditioned on sea surface temperature
(SST) and other boundary conditions, and a super-resolution module, which applies a patch-based
multi-diffusion to achieve extremely high spatial resolutions and data compression. In contrast,
ClimForGe is a forcing-response emulator, being conditioned directly on external drivers such as
greenhouse gases (GHG) and aerosols and trained to generate climate states directly.

3 ClimForGe: Climate Forcing-response Generator

3.1 Background

Diffusion models [8, 10] are used to generate high-quality data samples through iterative denoising
starting from a simple prior distribution. In the forward process, the data is corrupted until reaching
the prior, typically Gaussian, distribution. To reverse this, a neural network is trained to progressively
reconstruct the original sample [8]. ClimForGe’s architecture uses the EDM framework [10], using
a U-Net-based denoiser network [6]. Given the inherent stochastic nature of our climate, diffusion
models represent a natural and promising choice to model and sample from the implicit high-
dimensional probability distribution.

3.2 Dataset and Experiment Setup

ClimForGe is conditioned on forcing data from Input4MIPs within the Coupled Model Intercompari-
son Project Phase 6 (CMIP6) [7] processed similarly in ClimateBench [20] and incident shortwave
radiation at the top of the atmosphere (RSDT) from Community Earth System Model (CESM2) [5].
We included RSDT, at the daily temporal resolution, as it provides the crucial information about
the day of year that the model is generating, effectively encoding the seasonality signal that would
otherwise be missing from our annual forcings.

As both the forcing data and RSDT are originally at a coarser resolution (more details in Table 2), we
reconcile the spatial discrepancy between RSDT and our other forcings by simple spatial downscaling,
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Figure 1: Comparison of ClimForGe’s global annual means against CESM2 ensembles global annual
means over the period 2050-2100 for our test scenario ssp245

while the temporal mismatch was addressed via a linear interpolation for details, see Appendix B.2.
Making our inputs a 5 x 96 x 144 tensor.

The target data is derived from the CESM2, on a spatial grid of 192 x 288 with a daily resolution for
both temperature (tas) and precipitation (pr). Given the probabilistic nature of our model, it outputs
results in T' x /' x 192 x 288, where T' are our output variables and E is a sampling parameter for
the ensemble size to generate. To predict double the spatial resolution of the inputs, we insert an extra
upsampling Unet block to the base architecture from [10]. We train on SSP126, SSP585 (2015-2100)
and SSP370 (2015-2060), reserving SSP370 (2060-2100) for validation; all testing is conducted on
SSP245.

3.3 Training

We trained two ClimForGe models, one for temperature and one for precipitation, both trained
on the area-weighted mean squared error loss and following the noise schedule and precondition-
ing hyperparameters from [10]. The UNet backbone was initialized with 64 model channels and
trained for 100 epochs with an effective batch size of 512. We used the Adam optimizer [11] with
learning rate 4 X 1074, B = 0.9, B> = 0.95, weight decay 0, and a cosine annealing learning
rate schedule. Exponential moving average (EMA) weights with decay 0.9999 were maintained
during training. Models were trained stochastically over three CESM2 ensemble members (sampling
one member per epoch) on 8 Tesla V100-SXM2-32GB GPUs, requiring approximately 4 days. At
inference, ClimForGe can generate 50 years of full global daily temperature and precipitation fields
in approximately 1h 40m on a single Nvidia A100 GPU.

3.4 Precipitation Bias Correction

During evaluation, we observed a positive bias in regions with near-zero precipitation (pr), traced to
CESM2’s non-zero values in “dry” areas. This encouraged our model to generate larger and non-zero
pr values. To address this, we applied post-processing before metric computation, setting all pr values
below 5 x 10~ mm/day to zero. This threshold was chosen after inspecting CESM2 precipitation
distributions, with density histograms that revealed an abnormally large concentration of values below
5 x 10~ mm/day, which we classified as “dry” regions.

4 Results

To assess how well ClimForGe reproduces the ESMs behavior, we first compute the global annual
means from generated daily climate states over 2050-2100 for temperature and precipitation and we
compare this with the CESM2 ensemble mean for the respective variables. Figure 1 shows that the
ClimForGe generated ensemble means are close to the mean of the three CESM2 ensembles and able
to closely follow the positive trend of SSP245. We do note however, that there is a slight negative
bias for temperature and a slight positive bias for precipitation despite our post-processing efforts.



Table 1: RMSE and CRPS of global and time means for the years 2080-2100 of SSP245 for
ClimForGe and Climatebench models. Note that because Climatebench emulates NorESM, these
metrics are not directly comparable but the metrics provide a useful reference point for relative model
skill. CRPS is computed based on 5 ensemble members for ClimForGe and not computed for the
CNN as its a deterministic model.

TAS PR
Model RMSE (K) CRPS (K) | RMSE (mm/day) ~CRPS (mm/day)
GP 0.225 0.477 0.153 1.075
CNN 0.222 - 0.139 -
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Target Tas

Generated TAS Target TAS

Generated PR o - Generated PR Target PR

g

®
®

Temp:
P

Temperature (K)
Ter

(mmiday)
Precipitation (mm/day)
Precipitation (mm/day]

(a) Daily maps (b) Monthly maps (c) 2050-2100 map

Figure 2: Global maps comparing ClimForGe outputs with CESM2 for SSP245: (a) June 1, 2099; (b)
June 2099 monthly mean; (c) mean over 2050-2100.

Next we produce global maps across multiple time scales, specifically, we evaluate daily projections as
well as aggregated monthly, and decadal statistics to evaluate both ClimForGe’s short-term dynamics
and long-term statistics against CESM2 targets. Evaluating figure 2 it highlights ClimForGe’s ability
to capture key spatial patterns with correct reproduction of warm areas and the line of precipitation at
the tropics.

Finally, we report the area-weighted Root Mean Square Error (RMSE) and area-weighted Continuous
Ranked Probability Score (CRPS) [23] computed from the 20-year time mean (see A.1), following the
protocol defined in ClimateBench [20]. We benchmark ClimForGe’s scores against ClimateBench’s
Gaussian Process (GP) model and the Convolutional Neural Network (CNN) model, as they represent
the two best-performing baselines in ClimateBench [20], with the GP additionally offering ensemble
generation capabilities. We see that ClimForGe delivers highly competitive RMSE scores compared to
ClimateBench, despite operating at 2 x spatial and 365 x temporal resolutions, and outperforms the GP
baseline in terms of CRPS. These results position ClimForGe as an effective daily forcing—response
climate emulator, with the added advantage of leveraging a diffusion framework to naturally capture
uncertainty and generate diverse ensembles.

5 Conclusion and Future Work

In this paper, we have demonstrated the capabilities of a diffusion-based architecture for forc-
ing-response climate emulation. Our approach enables rapid exploration of diverse socioeconomic
scenarios while accurately capturing the uncertainties and internal variability of Earth System Models
(ESMs), while reproducing accurate long-term statistics in the relevant metrics for climate modeling
for both temperature and precipitation. Despite these positives, there are some limitations, such as the
disjoint generation of temperature and precipitation, which we aim to address in the future. Another
limitation is the lack of temporal coherence between samples, as the model is i.i.d., restricting its
ability to capture multi-day events.

Another promising direction for future work is the implementation of diffusion guidance. Since
diffusion models aim to learn the full distribution, they should in principle capture rare extreme
examples such as prolonged dry spells. These events, however, are difficult to model due to their
rarity. By incorporating classifier guidance, we hope to more effectively sample from the tails of the
distribution, enabling the direct generation of realistic extreme events that may occur.
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Table 2: Table of Inputs, Outputs and Forcings

Input Variables (Forcings)

Symbol  Description Spatial Resolution ~ Temporal Resolution
COq Carbon Dioxide 96 x 144 Yearly
Si0s Silicon Dioxide 96 x 144 Yearly
CHy Methane 96 x 144 Yearly
BC Black Carbon 96 x 144 Yearly
Additional Input Variables
Symbol  Description Spatial Resolution = Temporal Resolution
RSDT  The incident shortwave radiation 196 x 288 Monthly
at the top of the atmosphere
Output Variables
Symbol  Description Spatial Resolution  Temporal Resolution
tas Surface Air Temperature 196 x 288 Daily
pr Total Precipitation 196 x 288 Daily
Appendix
A Metrics

A.1 Time Mean

We define the time mean of a climate variable as the average taken over the temporal dimension,
while preserving the spatial dimensions:

1 T
2(,5) = 7 > (b4, ]), )
t=1

where T is the total number of time steps.

Given a metric function f(-, -) that compares two fields (e.g., RMSE, CRPS), the corresponding time
mean metric is defined as

M= f(z,7), @
where T and ¥ are the time mean fields of the prediction and target, respectively.

B Dataset

B.1 Inputs, outputs and forcing variables

Comprehensive details for the input, output, and forcing variables are described in Table 2. Note that
all models were trained using raw output variables, without applying normalization via PiControl.

Input (forcings) these variables are provided by the input4MIPS project https://aims2.11nl.
gov/search/input4mips/. RSDT and Daily Output variables can be downloaded https://
intake-esm.readthedocs.io/en/stable/tutorials/loading-cmip6-data.html.

B.2 Time Interpolation

N —d d
E,(t) = ———FEprev + —FEnes+  annual interpolation
N N 3
M —d d . . )
E,.(t) = TEPNU + MEnmt monthly interpolation

where N = 365, M = 30, representing the number of days in a year and an average month,
respectively. d denotes the number of days elapsed from the middle of the temporal scale; (July 279
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Figure 3: Global maps comparing ClimForGe outputs with CESM2 for SSP245: (a) 2099 yearly
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Figure 4: Grid wise CRPS Maps of Generated ClimForGe Ensembles vs CESM2 Ensembles for
2050-2100 time means.

This was done by take the CRPS at each grid cell, allowing for evaluation of our models
abilities on a local scale.

for annual; 15¢h day for monthly) and ¢, and Ey,..; correspond to variables values immediately
following or preceding ¢.

C Additional results and figures
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Figure 5: Leveraging model’s ensemble generation, we quantify the emulators internal variability
with it’s inter-realization bias against CESM2. It can be seen that our emulator is capable of capturing
a similar magnitude and structure of the internal variability present in CESM2, noting that TAS
presents a high skill than for PR, but overall reproducing the patterns well
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Figure 6: Global Means on a Daily Scale, Generated from ClimForGe vs CESM2 targets for
temperature.

We note here that there seems to be a lag in terms of the generated values, falling slightly
behind the patterns of CESM2 outputs by about a month
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Figure 7: Global Means on a Daily Scale, Generated from ClimForGe vs CESM2 targets for
precipitation.

We note here that CESM2 precipitation values oscillate more than our generated from ClimForGe
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