Robust Energy Storage Operation via Generative Wasserstein DRO

Gen-WDRO Framework for Decision-Making Under Distribution Shift

Han Xu & Christopher Yeh

California Institute of Technology

NeurIPS 2025 Climate Change Workshop

Problem & Motivation

Climate Challenge

Energy storage is critical for renewable energy integration and emissions reduction

Battery Operation Problems

- •Battery operators must decide charging schedules under uncertain electricity prices
- Distribution **shifts** from increasing renewables cause prediction models to fail

Need: Robust decision-making under uncertainty

Limitations of Existing Approaches

X Estimate-Then-Optimize (ETO)

Two-stage approach cannot directly improve downstream decision performance

X End-to-End Non-Robust

No robustness guarantees under distribution shift

⚠ End-to-End Robust Optimization

Worst-case optimization over entire uncertainty set is too conservative

⚠ Requires Convex Sets

Limited to convex uncertainty sets for tractability

√ Gen-WDRO: End-to-End Distributionally Robust

Optimizes over a Wasserstein ball around learned distribution - less conservative because unlikely events receive less weight, while maintaining robustness guarantees

Contextual Information

Original Problem:

$$z^*(x) \coloneqq \arg\min_{\mathbf{z}} \mathbf{E}^{P}[f(x, y, z) \mid x] \text{ s.t. } g(x, z) \leq \mathbf{0}$$

- \triangleright Notice Conditional Distribution of P(y|x) is **unknown**.
- But we can learn it which might be inaccurate.

$$\mathbf{z}^*(\mathbf{x}) \coloneqq \arg\min_{\mathbf{z}} \max_{\mathbf{Q} \in \mathcal{B}_{\rho}\left(\widehat{\mathbb{P}_{\theta}}(\cdot | \mathbf{X})\right)} \mathbb{E}^{\mathbf{Q}}[f(\mathbf{x}, \mathbf{y}, \mathbf{z})] \quad \text{s.t. } g(\mathbf{x}, \mathbf{z}) \leq \mathbf{0}$$

- > Even the learned distribution is inaccurate, the decision has robustness
- > Q1: How to learn the distribution? Q2: How to solve DRO?

Original Problem:

Future Outcome

$$z^*(x) := \operatorname{arg\,min}_z E^P[f(x, y, z) \mid x] \text{ s.t. } g(x, z) \leq 0$$

- \triangleright Notice Conditional Distribution of P(y|x) is **unknown**.
- But we can learn it which might be inaccurate.

$$z^*(x) \coloneqq \arg\min_{\mathbf{z}} \max_{\mathbf{Q} \in \mathcal{B}_{\rho}\left(\widehat{\mathbb{P}_{\theta}}(\cdot | x)\right)} \mathbb{E}^{\mathbf{Q}}[f(x, y, z)] \quad \text{s.t. } g(x, z) \leq \mathbf{0}$$

- > Even the learned distribution is inaccurate, the decision has robustness
- Q1: How to learn the distribution? Q2: How to solve DRO?

Decision variables

Original Problem:

$$z^*(x) \coloneqq \arg\min_{\mathbf{z}} \mathbf{E}^{P}[f(x, y, z) \mid x] \text{ s.t. } g(x, z) \leq \mathbf{0}$$

- \triangleright Notice Conditional Distribution of P(y|x) is **unknown**.
- But we can learn it which might be inaccurate.

$$\mathbf{z}^*(\mathbf{x}) \coloneqq \arg\min_{\mathbf{z}} \max_{\mathbf{Q} \in \mathcal{B}_{\rho}\left(\widehat{\mathbb{P}_{\theta}}(\cdot | \mathbf{x})\right)} \mathbb{E}^{\mathbf{Q}}[f(\mathbf{x}, \mathbf{y}, \mathbf{z})] \quad \text{s.t. } g(\mathbf{x}, \mathbf{z}) \leq \mathbf{0}$$

- > Even the learned distribution is inaccurate, the decision has robustness
- > Q1: How to learn the distribution? Q2: How to solve DRO?

Unknown conditional distribution

Original Problem:

$$z^*(x) := \operatorname{arg\,min}_z E^P[f(x, y, z) \mid x] \text{ s.t. } g(x, z) \leq 0$$

- \triangleright Notice Conditional Distribution of P(y|x) is **unknown**.
- But we can learn it which might be inaccurate.

Ambiguity Set of Probability

$$\mathbf{z}^*(x) \coloneqq \arg\min_{\mathbf{z}} \max_{\mathbf{Q} \in \mathcal{B}_{\rho}\left(\widehat{\mathbb{P}_{\theta}}(\cdot | \mathbf{x})\right)} \mathbb{E}^{\mathbf{Q}}[f(x, y, \mathbf{z})] \quad \text{s.t. } g(x, \mathbf{z}) \leq \mathbf{0}$$

- > Even the learned distribution is inaccurate, the decision has robustness
- > Q1: How to learn the distribution? Q2: How to solve DRO?

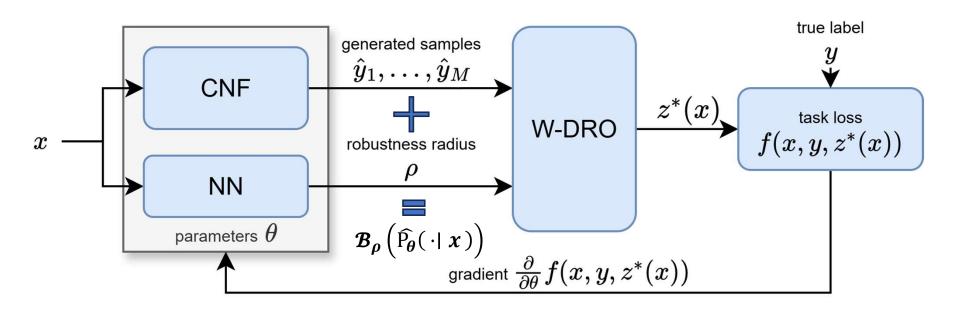
Gen-WDRO Framework

1. Conditional Normalizing Flow

2. Wasserstein Ambiguity Set

3. Adaptive Radius

4. End-to-End Training



Experimental Setup

Application: Grid-Scale Battery Storage

Day-ahead electricity market participation with optimal charging/discharging schedule

Inputs

- Past electricity prices
- •Temperature data
- Energy load forecast
- Calendar features

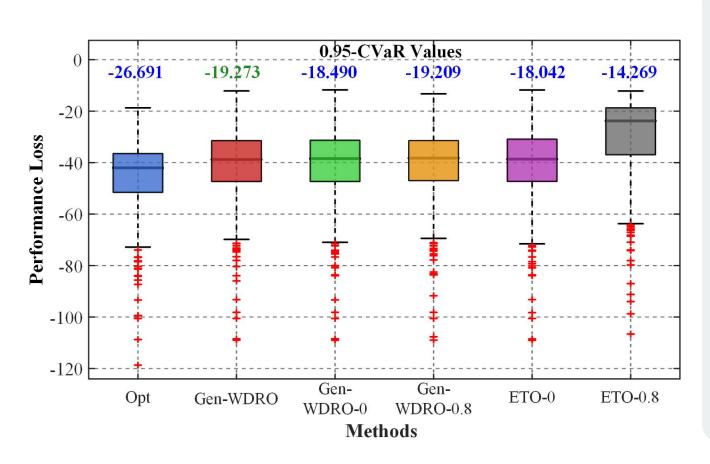
Decisions

- Charging schedule (z)
- •Discharging schedule (z)
- •24-hour horizon

Distribution Shift Test

Gaussian noise N(0, 0.3) added to prices, simulating increased volatility from renewables

Results: Superior Robustness



Takeaways:

- Adaptive Radius is necessary: Our method with a learnable radius outperforms fixed-radius versions (Gen-WDRO-0 and Gen-WDRO-0.8), showing that adapting the uncertainty quantification is critical.
- End-to-end training is necessary: directly improving the decision performance via doing back propagation on generative model can indeed improve the performance.

Conclusion & Climate Impact

Contributions

- Novel integration of generative modeling with DRO
- Tractable convex reformulation enabling efficient end-to-end learning
- Adaptive uncertainty quantification via learned robustness radius

Impact on Climate Goals

By improving battery storage profitability and robustness, Gen-WDRO supports deployment of energy storage systems that enable greater renewable energy integration.