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Problem & Motivation

Climate Challenge

Energy storage is critical for renewable energy integration and emissions reduction

Battery Operation Problems

•Battery operators must decide charging schedules under uncertain electricity prices

•Distribution shifts from increasing renewables cause prediction models to fail

Need: Robust decision-making under uncertainty



Limitations of Existing Approaches

Estimate-Then-Optimize (ETO)

Two-stage approach cannot directly improve downstream 

decision performance

End-to-End Non-Robust

No robustness guarantees under distribution shift

End-to-End Robust Optimization

Worst-case optimization over entire uncertainty set is too 

conservative

Requires Convex Sets

Limited to convex uncertainty sets for tractability

✓ Gen-WDRO: End-to-End Distributionally Robust

Optimizes over a Wasserstein ball around learned distribution - less conservative because unlikely events receive less 

weight, while maintaining robustness guarantees



Problem Formulation

Original Problem:

𝒛∗ 𝒙 ≔ arg minz E𝑷 𝒇 𝒙, 𝒚, 𝒛 𝒙 s.t. 𝒈 𝒙, 𝒛 ≤ 𝟎 

 Notice Conditional Distribution of 𝑃 𝒚 𝒙 is unknown.

 But we can learn it which might be inaccurate.

Distributionally robust optimization (DRO) formulation:

𝒛∗ 𝒙 ≔ arg min
𝒛

max
𝑸∈𝓑𝝆 ୔𝜽෢ ⋅ 𝒙 E𝑸 𝒇 𝒙, 𝒚, 𝒛  s.t. 𝒈 𝒙, 𝒛 ≤ 𝟎

 Even the learned distribution is inaccurate, the decision has robustness

 Q1: How to learn the distribution? Q2: How to solve DRO?

Contextual Information
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Future Outcome
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Decision variables
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Unknown conditional distribution

Ambiguity Set of Probability



Gen-WDRO Framework

1. Conditional Normalizing Flow 2. Wasserstein Ambiguity Set

3. Adaptive Radius 4. End-to-End Training

𝓑𝝆 P𝜽
෡ ⋅ 𝒙



Experimental Setup

Application: Grid-Scale Battery Storage

Day-ahead electricity market participation with optimal charging/discharging schedule

Inputs

•Past electricity prices

•Temperature data

•Energy load forecast

•Calendar features

Decisions

•Charging schedule (z)

•Discharging schedule (z)

•24-hour horizon

Distribution Shift Test

Gaussian noise N(0, 0.3) added to prices, simulating increased volatility from renewables



Results: Superior Robustness

Takeaways:

 Adaptive Radius is necessary: Our

method with a learnable radius

outperforms fixed-radius versions (Gen-

WDRO-0 and Gen-WDRO-0.8), showing

that adapting the uncertainty

quantification is critical.

 End-to-end training is necessary: directly

improving the decision performance via

doing back propagation on generative

model can indeed improve the

performance.



Conclusion & Climate Impact

Contributions

•Novel integration of generative modeling with DRO

•Tractable convex reformulation enabling efficient end-to-end learning

•Adaptive uncertainty quantification via learned robustness radius

Impact on Climate Goals

By improving battery storage profitability and robustness, Gen-WDRO supports deployment of energy storage systems 

that enable greater renewable energy integration.


