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Background:

» A lot of decision problems include the stages of both prediction
and optimization.

» Example: Effectively scheduling energy storage (i.e., when to
charge/discharge a battery for the most profit) is crucial for
battery operators, but it's difficult due to uncertainty in future
electricity prices.

Existing Approaches:

» Predict-then-Optimize: Standard methods first predict future
prices and then optimize decisions. However, prediction errors
can lead to very poor decisions, a problem known as the
"optimizer's curse”.

» End-to-End Robust Optimization (E2E-RO): These methods
learn an "uncertainty set" to make robust decisions but are
often limited to simple shapes (e.g., convex sets) and can be
overly conservative.

Our Goal:

» Develop a framework that learns a flexible representation of
uncertainty and makes robust decisions, especially when the

real-world data distribution shifts

Original Problem:

z*(x) == argmin, Ef[ f(x,y,2) | x]st. g(x,2) <0
» Notice Conditional Distribution of P(y|x) is unknown.
» But we can learn it which might be inaccurate.

Distributionally robust optimization (DRO) formulation:

% — - Q
z*(x) :== arg min maXQEBp(ﬁ;(-lx)) EY f(x,y,z)] stglxz) <0

» Even the learned distribution is inaccurate, the decision has

robustness
> Q1: How to learn the distribution? Q2: How to solve DRQO?

Our method combines a generative model (i.e., conditional
normalizing flow (CNF)) with Wasserstein distributionally

robust optimization (WDRO) for robust end-to-end learning.

How it works?

> Generate Price scenarios: A Conditional Normalizing Flow
(CNF) generative model takes input features (like weather
forecasts) and generates M possible future electricity price
scenarios {yi, ..., ¥u }-

» Quantify Uncertainty: A separate Neural Network (NN) learns
an adaptive robustness radius (p), which determines how
much we distrust the generated price distribution. This radius

changes based on the input features.

» Make a Robust Decision: The Wasserstein DRO (W-DRO)

layer finds the optimal charging schedule z*(x) that performs

best under the worst-case price distribution.

» End-to-End Training: The entire model is trained to minimize

the final decision loss, with gradients flowing back from the task
loss through the W-DRO layer to update both the CNF and NN
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Gen-WDRO Framework

Experimental Settings:

» Task: Schedule a grid-scale battery's charging/discharging over
a 24-hour horizon to maximize profit from price arbitrage.

» Distribution Shift: To simulate the increased price volatility
from future renewable energy penetration, we tested the
models on data where Gaussian noise was added to the
electricity prices and the electricity price pattern shifts.

» Evaluation Metric: We use the 0.95-Conditional Value-at-
Risk (CVaR) to measure robustness. CVaR quantifies the

average loss in the worst 5% of cases. Lower is better.
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Methods

Performance Comparison

® Among the compared methods: Our Gen-WDRO method
achieves the lowest (best) CVaR, indicating better robustness.

® Takeaways:

» Adaptive Radius is necessary: Our method with a learnable radius
outperforms fixed-radius versions (Gen-WDRO-0 and Gen-WDRO-
0.8), showing that adapting the uncertainty quantification is critical.

» End-to-end training is necessary: directly improving the decision
performance via doing back propagation on generative model can

indeed improve the performance.
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