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1. BACKGROUND & MOTIVATIONS

Background:

➢ A lot of decision problems include the stages of both prediction 

and optimization.

➢ Example: Effectively scheduling energy storage (i.e., when to 

charge/discharge a battery for the most profit) is crucial for 

battery operators, but it's difficult due to uncertainty in future 

electricity prices.

Existing Approaches:

➢ Predict-then-Optimize: Standard methods first predict future 

prices and then optimize decisions. However, prediction errors 

can lead to very poor decisions, a problem known as the 

"optimizer's curse".

➢ End-to-End Robust Optimization (E2E-RO): These methods 

learn an "uncertainty set" to make robust decisions but are 

often limited to simple shapes (e.g., convex sets) and can be 

overly conservative.

Our Goal:

➢ Develop a framework that learns a flexible representation of 

uncertainty and makes robust decisions, especially when the 

real-world data distribution shifts
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4. EXPERIMENT

3. Method: The Gen-WDRO Framework

⚫ Among the compared methods: Our Gen-WDRO method 

achieves the lowest (best) CVaR, indicating better robustness. 

⚫ Takeaways: 

➢ Adaptive Radius is necessary: Our method with a learnable radius 

outperforms fixed-radius versions (Gen-WDRO-0 and Gen-WDRO-

0.8), showing that adapting the uncertainty quantification is critical. 

➢ End-to-end training is necessary: directly improving the decision 

performance via doing back propagation on generative model can 

indeed improve the performance.

Our method combines a generative model (i.e., conditional 

normalizing flow (CNF)) with Wasserstein distributionally 

robust optimization (WDRO) for robust end-to-end learning. 

How it works?

➢ Generate Price scenarios: A Conditional Normalizing Flow 

(CNF) generative model takes input features (like weather 

forecasts) and generates 𝑀  possible future electricity price 

scenarios {𝑦1̂, … , 𝑦̂𝑀}. 

➢ Quantify Uncertainty: A separate Neural Network (NN) learns 

an adaptive robustness radius (ρ), which determines how 

much we distrust the generated price distribution. This radius 

changes based on the input features.

2. Problem Formulation

Performance Comparison

Original Problem:

𝒛∗ 𝒙 ≔ argminzE
𝑷 𝒇 𝒙, 𝒚, 𝒛 𝒙 s.t. 𝒈 𝒙, 𝒛 ≤ 𝟎 

➢ Notice Conditional Distribution of 𝑃 𝒚 𝒙  is unknown. 

➢ But we can learn it which might be inaccurate.

Distributionally robust optimization (DRO) formulation:

𝒛∗ 𝒙 ≔ argmin
𝒛

max
𝑸∈𝓑𝝆 ෢P𝜽 ⋅ 𝒙 E𝑸 𝒇 𝒙, 𝒚, 𝒛 s.t. 𝒈 𝒙, 𝒛 ≤ 𝟎

➢ Even the learned distribution is inaccurate, the decision has 

robustness

➢ Q1: How to learn the distribution? Q2: How to solve DRO?

Experimental Settings:

➢ Task: Schedule a grid-scale battery's charging/discharging over 

a 24-hour horizon to maximize profit from price arbitrage.

➢ Distribution Shift: To simulate the increased price volatility 

from future renewable energy penetration, we tested the 

models on data where Gaussian noise was added to the 

electricity prices and the electricity price pattern shifts.

➢ Evaluation Metric: We use the 0.95-Conditional Value-at-

Risk (CVaR) to measure robustness. CVaR quantifies the 

average loss in the worst 5% of cases. Lower is better.

Gen-WDRO Framework

➢ Make a Robust Decision: The Wasserstein DRO (W-DRO) 

layer finds the optimal charging schedule 𝒛∗ 𝒙  that performs 

best under the worst-case price distribution.

➢ End-to-End Training: The entire model is trained to minimize 

the final decision loss, with gradients flowing back from the task 

loss through the W-DRO layer to update both the CNF and NN 

parameters. 
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