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Abstract

Increasing renewable energy adoption combined with energy storage is necessary
for reducing emissions from the energy sector. A fundamental challenge in energy
storage operations is deciding the charging schedule given uncertainty over future
electricity prices. This work proposes Gen-WDRO, a novel generative Wasser-
stein distributionally robust optimization framework that combines conditional
normalizing flows with distributionally robust optimization for robust decision-
making under distribution shift. Our approach learns conditional distributions via
normalizing flows, constructs Wasserstein ambiguity sets around these learned
distributions, and employs neural networks to adaptively determine robustness
radii. We prove that under linear cost structures, the resulting distributionally
robust problem can be reformulated as a tractable convex optimization problem,
enabling efficient end-to-end training that simultaneously improves performance
and enhances robustness against distribution shift. Experiments on battery storage
management under distribution shift demonstrate that Gen-WDRO achieves supe-
rior robustness with the best CVaR performance, validating the effectiveness of
adaptive uncertainty quantification for robust decision-making.

1 Introduction

Machine learning techniques are widely used for predicting uncertain quantities for decision-making
under uncertainty in many real-world problems including energy systems [4, 8], finance [3], sup-
ply chain management [7], among many other domains. Traditional predict-then-optimize and
estimate-then-optimize (ETO) approaches first train predictive models for prediction accuracy, then
use predictions in downstream optimization [5]. However, this separation between training and
optimization causes misalignment: prediction errors optimized for statistical metrics may severely
degrade decision quality which is also known as the “optimizer’s curse” [14]. End-to-end (E2E)
approaches (also known as decision-focused learning [11]) address this by training models to directly
minimize downstream decision costs using differentiable optimization [4].

Recent E2E approaches have explored incorporating risk aversion by predicting an uncertainty set
instead of a point estimate for the uncertain parameter, and then solving a robust optimization (RO)
problem [2, 17, 20] to minimize the worst-case cost over the learned uncertainty set. However, the
E2E-RO approach has two limitations. First, to ensure tractability, E2E-RO requires the uncertainty
set to be convex, which limits the expressivity of the uncertainty representation. Additionally, the
worst-case optimization approach can lead to overly conservative solutions [15]. Due to space
constraints, we include a longer discussion about related works in Appendix A.

Instead of learning an uncertainty set for the uncertain parameter, an alternative approach is to quantify
uncertainty around a learned conditional distribution of the parameter. In this work, we propose a
novel generative Wasserstein distributionally robust optimization framework (Gen-WDRO)
that combines generative modeling with distributionally robust optimization for end-to-end
learning. Our approach provides a flexible uncertainty representation, and we demonstrate robustness
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against distribution shift in experiments on a battery storage optimization problem. By improving
battery storage profitability, this approach shows its potential for supporting the deployment of energy
storage systems that enables greater renewable energy integration and climate mitigation.

2 Problem Formulation and Methodology

2.1 Problem Statement

Consider an agent that observes an input z € R” and must make a decision z € RP without knowing
the future outcome y € R™. Once z is chosen and y is revealed, the agent incurs a task loss f(x,y, z)
defined by a loss function f : R™ x R"™ x R? — R. We assume that the decision z must adhere to
hard constraints g(z, z) < 0 which do not depend on the future outcome y. The future outcome y is
uncertain and only influences the cost function f(x, y, z). Let P denote the unknown joint distribution
of (z,y). The agent’s goal is to minimize the expected cost while satisfying the constraints:

2*(z) := argmin E¥[f(z,y,2) | 2] st g(z,2) <0 (1

where EF[- | 2] denotes conditional expectation given z.

The above problem cannot be solved directly since the conditional distribution P(y | «) is not
known. Instead, we assume the agent has access to a set of i.i.d. samples {(x;,y;)}¥; from the

joint distribution P. Given the samples, we then learn a conditional distribution Py(- | x) with

learnable parameters 6 to estimate the conditional expectation EF[f(z,y,z) | z]. However, the
learned conditional distribution may not be accurate, or distribution shifts may occur, leading to poor
decision-making performance under the learned distribution. To address this issue, we propose using
distributionally robust optimization (DRO) to ensure that the decision is robust against an ambiguity

set of distributions B,;(I@’g(- | ) that is centered at the learned conditional distribution Py (- | z) with
some distribution metric d(-, -):

By(®o(- | 7)) = {Q € PR") : d(@Bo(- | 2))) < p}- @)
In this case, the agent’s robust decision policy can be formulated as the following DRO problem:

2*(z) :=argmin  max  E@[f(x,y,2)] st g(z,z) <0 3)
# QeB,(Py(-|x))

2.2 Ambiguity Set Construction and Problem Tractability

Our challenge is to ensure tractability and differentiability of the robust decision policy (3) so that
we can learn a conditional distribution Py (- | z) from the data samples in an end-to-end way. We

model the conditional distribution I@’g(~ | ) with a conditional normalizing flow (CNF) [19]. Because
computing an ambiguity set directly around a CNF model is intractable, we instead approximate the
learned CNF with an empirical distribution. For each input x, we sample M predictions {g; }£,

from the learned CNF to construct a discrete empirical distribution Q Mm(y) = ﬁ Efﬁl d4,. Then,
we construct the ambiguity set (2) using the Wasserstein metric

dw(@,Qu) =  inf / ly = o' dy(y, v') @)
veI'(Q,Qn) JR™ xR™

where I'(Q, Q ) is the set of all joint distributions  on R™ x R™ with marginals Q and Q M, and
| - || is any norm on R™. In our experiments, we use the 2-norm || - ||o.

The following theorem shows that the DRO problem (3) based on this ambiguity set can be reformu-
lated as a tractable convex optimization problem under certain conditions.
Theorem 1. Suppose the task loss function has the form f(x,y,z) = f(x, z) + (y, F'z) where
F € R™ P, and both f(x,z) and the constraint function g(x, z) are convex in z. Then, problem
(3) with ambiguity set Bp((@ M) based on the Wasserstein metric can be reformulated as the convex
optimization problem
. : 1~
2" (z) := argmin p||Fz||« + f(x,2) + N Z(yl, Fz) stg(z,z)<0 Q)

i=1
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Figure 1: Our proposed Gen-WDRO method utilizes a CNF to generate a discrete distribution and a
DRO layer to improve robustness. The parameters are updated using gradients from the task loss.

where || - ||« is the dual norm of the norm || - || used in the definition of the Wasserstein distance (4).

The proof of this theorem is a simple application of [12, Corollary 5.1] by reformulating the inner
maximization problem in (3).

Notice that the choice of the radius p is flexible. In our approach, we employ a neural network to
learn the radius p as a function of the input z. In practice, the uncertainty of the learned distribution
can vary depending on the specific input z, so it is important for the radius p to adapt accordingly.

2.3 End-to-end Training

Algorithm 1 End-to-end training of the Gen-WDRO method.

function TRAIN(training data D = {(z4,y:)}Y,, initial model parameters 6)
for mini-batch B C {1,..., N} do
fori ¢ Bdo
Compute the gradient of the likelihood loss gl¥.
Sample M independent samples {g; } from the CNF neural network.
Solve the convex optimization problem (5).
Compute the gradient of the task loss: g% = 9f (xl, Yiy 2 (xl)) /0.
Update parameters 0 using the gradients » ic B Qtask g5 k4 ()zhkgz

After reformulating the DRO problem as a convex optimization problem, we propose a methodology
in Algorithm 1 to enable end-to-end training of the decision-making policy. For simplicity, the
parameters of both the CNF model and the neural network for p are collectively denoted as 6. Our
end-to-end training approach uses mini-batch gradient descent to minimize a weighted loss function

4;(0) = cuix logﬁpe(yi | 23) + cvask f (@i, yi, 2% ()
which accounts for both the likelihood loss of the CNF neural network and the task loss of the

decision-making policy. The gradient of the likelihood loss gi'* := log Py (yi | xl) is computed
as in [19]. The gradient of the task loss on a single instance is glaSk = 82 |(myz ) %Sg |z:» Wwhere
aaza z; can be computed by differentiating through the Karush- Kuhn—Tucker (KKT) conditions
of the convex reformulated DRO problem (5) [1]. Spe01ﬁcally, can be expressed as TZG =
Zfil g';i %yé + 2 ap ae’ and the gradlents and ‘92 can be computed by differentiating through

the convex optimization problem.

3 Experimental Results

We consider the problem of grid-scale battery storage participating in day-ahead electricity markets,
where the operator seeks to optimally schedule charging and discharging operations for the next day to
maximize profit through price arbitrage while satisfying operational constraints. We follow the same
setup as in Donti et al. [4]. The input features = include the past day’s prices and temperature, the
next day’s energy load forecast and temperature forecast, binary indicators of weekends or holidays,
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Figure 2: Performance comparison on the battery management problem. Each method is tested on
438 test cases, and 0.95-CVaR is adopted for robustness comparison. Lower values are better.

and yearly sinusoidal features. The operator utilizes these features to predict future energy prices
y € RT over a T-step horizon, and decides how much and when to charge (2™ € RT) or discharge
(z°" € RT) the battery, together represented by the decision variable z. Due to space constraints, we
specify the specific form of task loss f and constraint g in Appendix B. Code will be released on
GitHub upon publication.

We evaluate our approach on this problem under distribution shift, where the test set is corrupted with
Gaussian A/ (0, 0.3) noise added to standardized future electricity prices. This simulates the increased
volatility expected from growing renewable energy penetration.

Figure 2 compares our Gen-WDRO approach (with trainable radius) against other baselines: ETO-0
and ETO-0.8, representing two-stage estimate-then-optimize approaches using fixed-radius DRO
layers with p = 0 and p = 0.8 (p = 0.8 is chosen as the mean radius from our Gen-WDRO model),
and fixed-radius variants Gen-WDRO-0 and Gen-WDRO-0.8. The “Opt” benchmark represents the
optimum obtained using ground-truth prices for optimization.

Our Gen-WDRO method demonstrates superior robustness with the best 0.95-CVaR performance,'
and outperforms baselines. Additionally, Gen-WDRO achieves more stable performance compared
to fixed-radius approaches and substantially outperforms ETO methods. This shows that learning the
uncertainty radius end-to-end, rather than fixing it, leads to better performances.

4 Conclusion

We have presented a generative Wasserstein distributionally robust optimization (Gen-WDRO)
method for end-to-end decision-making under uncertainty. By integrating generative modeling with
DRO, our approach enables flexible conditional distribution learning and enhances robustness against
distribution shifts. Experimental results demonstrate its potential for helping robust decision making
in electricity markets and power systems despite distribution shift, providing a pathway for scaling
energy storage deployment to support higher renewable energy penetration and climate goals.
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'The a-conditional value-at-risk (CVaR) of a random variable X is defined as E[X | X > qo (X)], where
da(X) is the a-quantile of X [16]. CVaR is a common metric for evaluating robustness [17, 18].
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A Related Works

Robust End-to-End Learning. Donti et al. [4] pioneered task-based end-to-end learning, which
trains models to minimize decision costs rather than prediction error. Differentiable optimization
layers [1] enable tractable gradient computation through convex programs. Yeh et al. [20] utilize
conformal prediction to calibrate uncertainty sets and employ input-convex neural networks to
represent general convex uncertainty sets.

Distributionally Robust End-to-End Learning. Costa and Iyengar [3] developed KL-divergence-
based distributionally robust portfolio optimization. Ma et al. [10] proposed generic differentiable
DRO layers for mixed-integer problems using second-order cone ambiguity sets, mentioning the
possibility of using Wasserstein distance to construct ambiguity sets but without experimental
validation. Nguyen et al. [13] propose a conditional distributionally robust optimization strategy that
solves conditional DRO problems without requiring explicit learning of the conditional distribution.
Liang et al. [8] propose using DRO to solve two-stage decision-making problems in an end-to-end
manner, though they do not learn conditional distributions.

Generative Models for Decision-Making. Our work is also related to generative modeling which
has been applied in various fields such as image generation [6] and drug design [9]. In the context of
decision-making, Wang et al. [18] employ generative models to learn conditional distributions for
CVaR optimization. Rather than using robust optimization, they directly optimize the CVaR value as
their objective function.

Unlike existing work, our approach integrates generative modeling with DRO for end-to-end learning
under distribution shift, providing both flexible conditional distribution learning and enhanced
robustness guarantees.
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B Experimental Setting Details

The battery is characterized by its storage capacity B, charging efficiency -, and maximum charging
and discharging rates c¢;,, and c,,¢, respectively. The objective function balances multiple goals:
profit maximization, and maintaining operational flexibility by keeping the battery state of charge
near 50% of capacity (weighted by parameter \) to enable participation in multiple markets.

2
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The constraints are given by
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Following [4], weset T =24, B =1,y = 0.9, " = 0.5, ™ = 0.2, and A = 0.1.

We set the following parameters for our proposed Gen-WDRO model: a5 = 0.8, ajik = 0.2, and
M = 10.
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