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Motivation

Background

Processing WSIs in digital pathology requires
powerful hardware

Resulting in considerable carbon dioxide
equivalent (CO,eq) emissions’

Transferring datasets to remote computation
sites may further increase emissions

Research Question

How can we reduce carbon emissions (CE) of
data transmissions?

*  What is the optimal time of transmission to

reduce CE?
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Sadr et al.; Operational greenhouse-gas emissions of deep
learning in digital pathology: a modelling study; Lancet DH, 2024



Carbon Intensity

« Carbon emissions associated with energy generation
depend on a country's energy mix.

« Example: Renewable sources (wind, solar) — Low
Carbon Intensity (ClI)

= Optimizing computation workloads by allocating
them to cloud data centers in low-Cl countries can
significantly reduce CO,eq emissions.

Carbon intensity (gco.eq/kwh)
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Network Routing

* Internet data is sent as |IP packets, forwarded router by
router toward the destination.

« Packets don’t know the full path in advance; each router
decides the next hop.

In this work

1. PerfOps’ MTR (MyTraceRoute) was used to trace
sequence of hops between client and server
— Hops were geolocated by IP and serve as anchor points
— Provides closest real-path approximation

2. Network graph built from ITU Broadband Map? and
Submarine Cable Map? data
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"https://perfops.net/ ?https://bbmaps.itu.int/bbmaps/ Shttps://www.submarinecablemap.com



Routing Methods

Start @ @ Destination
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Baseline: MTR hop sequence with
minimum CI routing between traced hops Dijkstra‘s shortest path algorithm

Shortest: Path with minimum total distance ~ is used to compute paths with the

Path minimizing Cl lowest total weight.




Exemplary Routes

Los Angeles, USA to Zaragoza,
Spain with carbon costs 38.16,
51.67 (+35.4%), 22.41 (-41.3%)

Dublin, Ireland to Stockholm, Sweden
with carbon costs 2.93, 2.55 (-13.1%),
2.07 (-29.5%)
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Results for selected routes

From City To City Baseline | Shortest | Lowest CI (ours)
gCO2/GB std (+) |gC02/GB Ap... (%) std (+)|gCO2/GB (Ap,... (%) |std (£)

Tokyo Sao Paulo 76.77 4.08 78.26 1.95 12.72 58.05 -24.39 5.57
Singapore Ziirich 32.77 4.19 55.65 69.80 2.51 31.95 -2.51 3.31
Amsterdam San Jose 39.07 3.44 45.69 16.92 4.26 18.06 -53.79 1.99
Chicago Jakarta 124.02 9.18 88.35 -28.76 5.05 46.66 -62.37 2.97
Los Angeles Zaragoza 38.16 1.58 51.67 35.38 2.77 22.41 -41.29 1.39
Seattle Stockholm 15.28 1.81 9.09 -40.51 0.88 9.07 -40.67 0.88
Dublin Stockholm 2.93 2.09 2.55 -13.14 1.61 2.07 -29.54 1.32
Frankfurt am Main Dar Kulayb  13.20 2.66 19.71 49.33 0.91 13.20 0.00 2.66
Athens Milan 8.40 0.97 4.37 -47.95 0.48 3.77 -55.14 0.36
Frankfurt am Main Melbourne 101.49 15.60 94.11 -7.27 6.68 76.99 -24.14 8.38




Average Improvements

Baseline vs.

Pairwise Route Comparison

300+

» Corresponding pairs of routes are

220 connected by lines.

200 « Green lines: reduction in CE

Yellow lines: equal CE
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Mean (standard deviation):

Baseline: 46.89 (49.05)
: 28.1 (25.34)
Shortest: 43.98 (32.68)
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Time-of-Day Variation in Cl
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= Recompute graph weights for every hour! —
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Carbon Emission Graph




Time-of-Day Variation

Data

80 » 4 days of 4 months (January, April,
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Seasonal Variation
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Summary

Conclusion

«  We propose a graph-based, carbon-aware routing approach for internet data transfers.
* Incorporates temporal and spatial variations in grid carbon intensity.
» Achieves ~40% emission reduction compared to the baseline (N = 670 route pairs).

Limitations

* Internet routing is not (yet) path-aware; routes cannot currently be precomputed
 Initiatives like SCION' (ETH Zirich spin-off) may enable path-aware routing in the future.

« Data transfer duration is not considered in the current model.

Thttps://www.scion.org
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