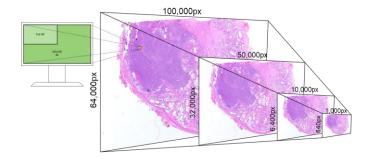
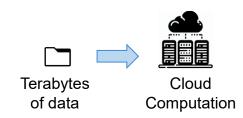
Pathways to Sustainability: Carbon-Aware Routing for Global Al Data Transfers

Nikolas EJ Schmitz, Dayana Savostianova, Leon Niggemeier, Martin Strauch, Peter Boor

Institute of Pathology RWTH Aachen University Hospital Germany


Motivation

Background


- Processing WSIs in digital pathology requires powerful hardware
- Resulting in considerable carbon dioxide equivalent (CO₂eq) emissions¹
- Transferring datasets to remote computation sites may further increase emissions

Research Question

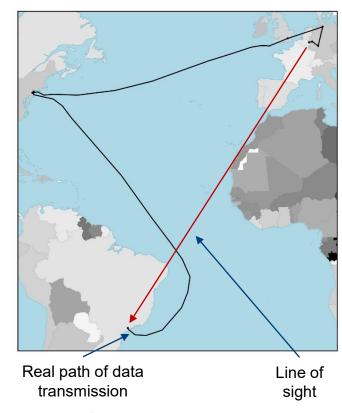
- How can we reduce carbon emissions (CE) of data transmissions?
- What is the optimal time of transmission to reduce CE?

Whole Slide Image (WSI)

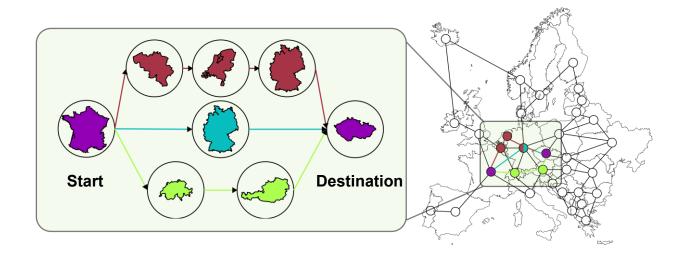
Carbon Intensity

- Carbon emissions associated with energy generation depend on a country's energy mix.
- Example: Renewable sources (wind, solar) → Low
 Carbon Intensity (CI)

→ Optimizing computation workloads by allocating them to cloud data centers in low-Cl countries can significantly reduce CO₂eq emissions.


app.electricitymaps.com/map/

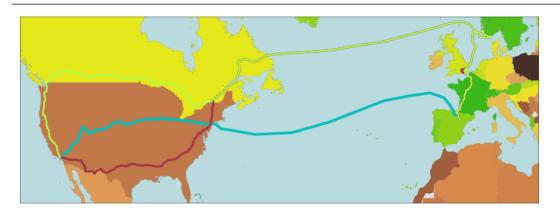
Network Routing


- Internet data is sent as IP packets, forwarded router by router toward the destination.
- Packets don't know the full path in advance; each router decides the next hop.

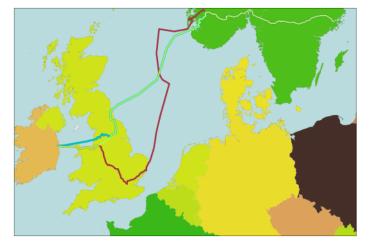
In this work

- PerfOps'¹ MTR (MyTraceRoute) was used to trace sequence of hops between client and server
 - Hops were geolocated by IP and serve as anchor points
 - Provides closest real-path approximation
- Network graph built from ITU Broadband Map² and Submarine Cable Map³ data

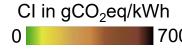
Routing Methods


Baseline: MTR hop sequence with minimum CI routing between traced hops

Shortest: Path with minimum total distance

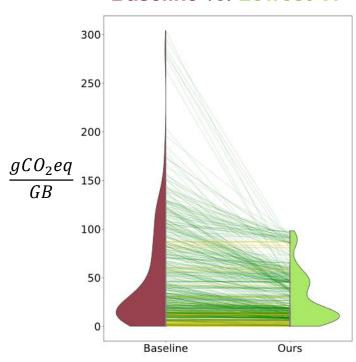

Lowest CI: Path minimizing CI

Dijkstra's shortest path algorithm is used to compute paths with the lowest total weight.


Exemplary Routes

Los Angeles, USA to Zaragoza, Spain with carbon costs 38.16, 51.67 (+35.4%), 22.41 (-41.3%)

Dublin, Ireland to Stockholm, Sweden with carbon costs 2.93, 2.55 (-13.1%), 2.07 (-29.5%)



Results for selected routes

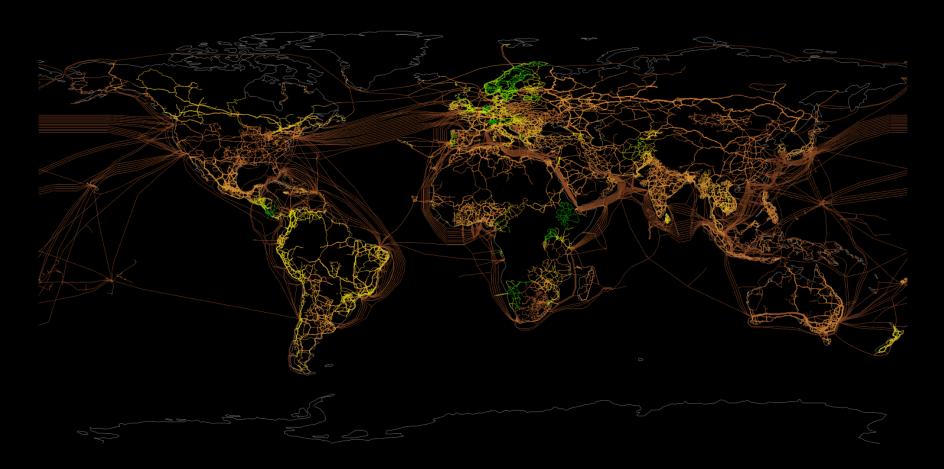
From City	To City	Baseline		Shortest			Lowest CI (ours)		
		m gCO2/GB	std (±)	$ { m gCO2/GB} $	$\Delta_{Base.}$ (%)	$\overline{\mathrm{std}}\ (\pm)$	m gCO2/GB	$\Delta_{Base.}$ (%)	$\operatorname{std}(\pm)$
Tokyo	São Paulo	76.77	4.08	78.26	1.95	12.72	58.05	-24.39	5.57
Singapore	Zürich	32.77	4.19	55.65	69.80	2.51	31.95	-2.51	3.31
Amsterdam	San Jose	39.07	3.44	45.69	16.92	4.26	18.06	-53.79	1.99
Chicago	Jakarta	124.02	9.18	88.35	-28.76	5.05	46.66	-62.37	2.97
Los Angeles	Zaragoza	38.16	1.58	51.67	35.38	2.77	22.41	-41.29	1.39
Seattle	Stockholm	15.28	1.81	9.09	-40.51	0.88	9.07	-40.67	0.88
Dublin	Stockholm	2.93	2.09	2.55	-13.14	1.61	2.07	-29.54	1.32
Frankfurt am Main	Dār Kulayb	13.20	2.66	19.71	49.33	0.91	13.20	0.00	2.66
Athens	Milan	8.40	0.97	4.37	-47.95	0.48	3.77	-55.14	0.36
Frankfurt am Main	Melbourne	101.49	15.60	94.11	-7.27	6.68	76.99	-24.14	8.38

Average Improvements

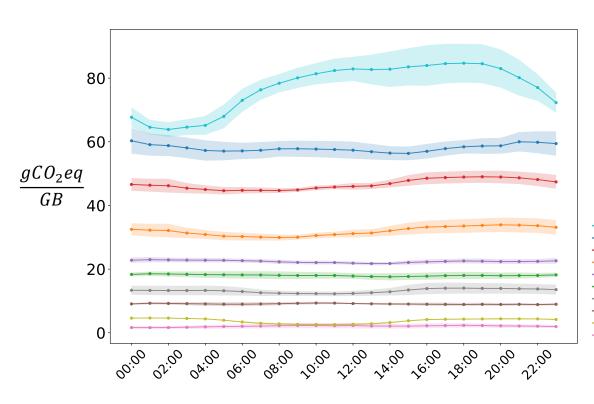
Baseline vs. Lowest Cl

Pairwise Route Comparison

- Corresponding pairs of routes are connected by lines.
- Green lines: reduction in CE Yellow lines: equal CE
- N = 670 route pairs


Mean (standard deviation):

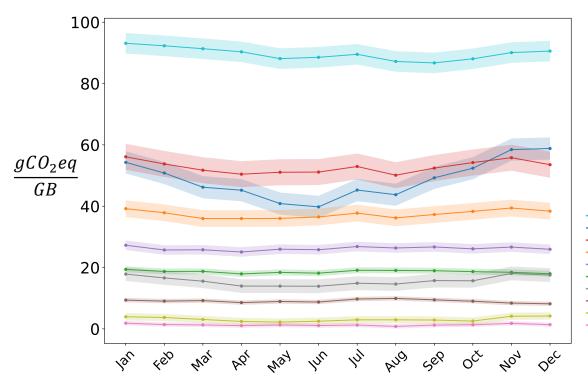
Baseline: 46.89 (49.05) Lowest CI: **28.1** (25.34) Shortest: 43.98 (32.68)


Time-of-Day Variation in CI

(1) Hourly carbon intensity gCO₂eq / kWh Varies by time of day ▶ Data sources Hourly electricity origin Energy mix ▶ Carbon intensity (gcozeq/kWh) Recompute graph weights for every hour! 1200

Carbon Emission Graph

Time-of-Day Variation



Data

- 4 days of 4 months (January, April, June, October)
- 24h per day
- Mean and SEM of Lowest CI paths

	From City	To City	Baseline	Shortest	Lowest CI
•	Frankfurt am Main	Melbourne	33647	20678	32433
-	Tokyo	São Paulo	35292	24342	26568
-	Chicago	Jakarta	35606	20968	31944
-	Singapore	Zürich	19929	12016	19408
-	Los Angeles	Zaragoza	14761	11048	15414
-	Amsterdam	San Jose	24981	11106	13501
-	Frankfurt am Main	Dār Kulayb	9988	5743	9988
-	Seattle	Stockholm	15365	11475	11493
-	Athens	Milan	3105	1824	1905
-	Dublin	Stockholm	2671	2149	2156

Seasonal Variation

Data

- All days and months of 2024
- 1h per day (11:00)
- Mean and SD of Lowest CI paths

	From City	To City	Baseline	Shortest	Lowest CI
•	Frankfurt am Main	Melbourne	33647	20678	32433
-	Tokyo	São Paulo	35292	24342	26568
-	Chicago	Jakarta	35606	20968	31944
-	Singapore	Zürich	19929	12016	19408
-	Los Angeles	Zaragoza	14761	11048	15414
•	Amsterdam	San Jose	24981	11106	13501
	Frankfurt am Main	Dār Kulayb	9988	5743	9988
	Seattle	Stockholm	15365	11475	11493
-	Athens	Milan	3105	1824	1905
-	Dublin	Stockholm	2671	2149	2156

Summary

Conclusion

- We propose a graph-based, carbon-aware routing approach for internet data transfers.
- Incorporates temporal and spatial variations in grid carbon intensity.
- Achieves ~40% emission reduction compared to the baseline (N = 670 route pairs).

Limitations

- Internet routing is not (yet) path-aware; routes cannot currently be precomputed
 - Initiatives like SCION¹ (ETH Zürich spin-off) may enable path-aware routing in the future.
- Data transfer duration is not considered in the current model.

Thanks for your attention

