

Institute of Pathology Uniklinik RWTH Aachen Germany

## Pathways to Sustainability: **Carbon-Aware Routing for Global AI Data Transfers**

Nikolas EJ Schmitz, Dayana Savostianova, Leon Niggemeier, Martin Strauch, Peter Boor

#### **Background**

- Deep learning enables advances in pathology and demands substantial computational power, resulting in considerable carbon dioxide equivalent (CO2eq) emissions.
- The energy required to transfer large datasets between infrastructures may further add to CO<sub>2</sub>eq emissions and deserves closer attention in sustainable AI research.

#### Question

- How can carbon-aware routing of data transmission across global internet infrastructures reduce the carbon emissions (CE) associated with AI training and inference?
- When is the optimal time to transfer data to reduce CE?

#### **Routing Algorithms**

Dijkstra's shortest path algorithm was applied to compute the paths with the lowest total weights.

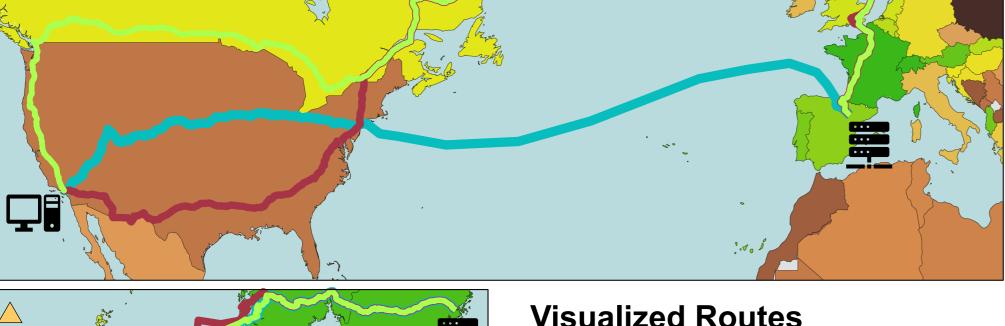
We've evaluated three methods:

Baseline: Traceroute hop sequence with minimum CI routing between traced hops.

**Shortest**: path with minimum total distance.

Lowest CI: path minimizing carbon intensity.

# **Destination** Start


Methods

Weights of CE graph are calculated using the following formula:

 $w_e = Energy consumption metric$ Cable length<sub>e</sub>(km)  $\times$  Data volume (GB)  $\times$ Carbon Intensity<sub>c.t</sub>

Weights of shortest graph are the cable lengths:

 $w_S = Cable length_S(km)$ 



Dublin, Ireland to Stockholm, Sweden with carbon costs 2.93, 2.55 (-13.1%), **2.07** (-29.5%)

#### **Visualized Routes**

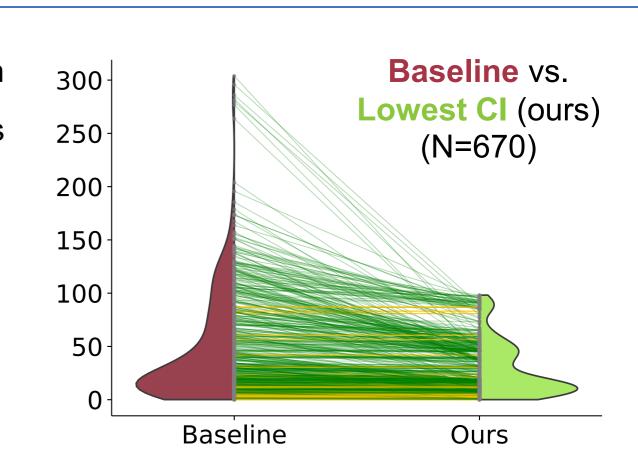
Los Angeles, USA to Zaragoza, Spain with carbon costs 38.16, 51.67 (+35.4%), **22.41** (-41.3%)



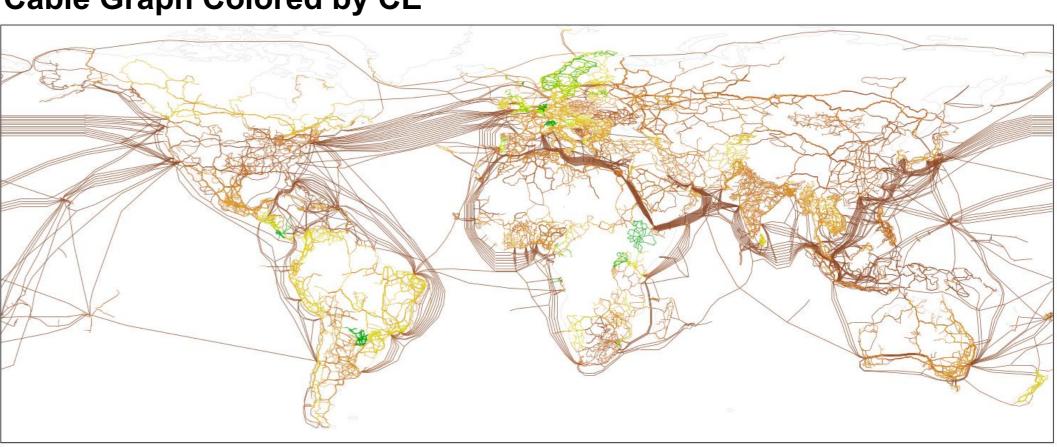
AWS S3 Server



PerfOps MTR node




# Results


#### **Pairwise Route Comparison**

Corresponding pairs of routes are connected by lines. Green lines: reduction in CE; yellow lines: equal CE. Mean (std dev) emissions for:

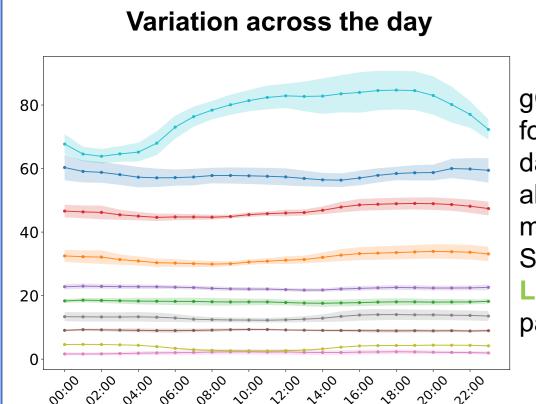
Baseline: 46.89 (49.05), Lowest CI: 28.1 (25.34), **Shortest**: 43.98 (32.68).

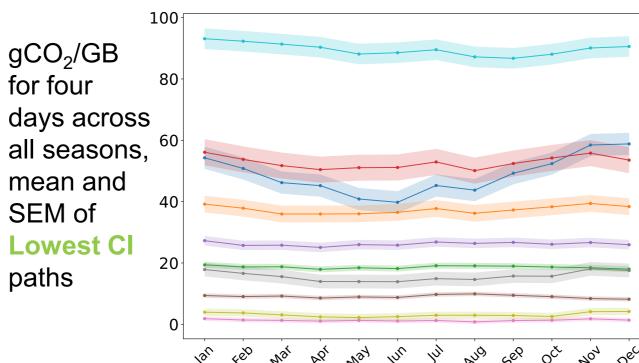


## **Cable Graph Colored by CE**



| From City         | To City    | Baseline  |                           | Shortest |                      |         | Lowest CI (ours) |                      |                           |
|-------------------|------------|-----------|---------------------------|----------|----------------------|---------|------------------|----------------------|---------------------------|
|                   |            | m gCO2/GB | $\operatorname{std}(\pm)$ | gCO2/GB  | $\Delta_{Base.}$ (%) | std (±) | m gCO2/GB        | $\Delta_{Base.}$ (%) | $\operatorname{std}(\pm)$ |
| Tokyo             | São Paulo  | 76.77     | 4.08                      | 78.26    | 1.95                 | 12.72   | 58.05            | -24.39               | 5.57                      |
| Singapore         | Zürich     | 32.77     | 4.19                      | 55.65    | 69.80                | 2.51    | 31.95            | -2.51                | 3.31                      |
| Amsterdam         | San Jose   | 39.07     | 3.44                      | 45.69    | 16.92                | 4.26    | 18.06            | -53.79               | 1.99                      |
| Chicago           | Jakarta    | 124.02    | 9.18                      | 88.35    | -28.76               | 5.05    | 46.66            | -62.37               | 2.97                      |
| Los Angeles 太     | Zaragoza   | 38.16     | 1.58                      | 51.67    | 35.38                | 2.77    | 22.41            | -41.29               | 1.39                      |
| Seattle           | Stockholm  | 15.28     | 1.81                      | 9.09     | -40.51               | 0.88    | 9.07             | -40.67               | 0.88                      |
| Dublin            | Stockholm  | 2.93      | 2.09                      | 2.55     | -13.14               | 1.61    | 2.07             | -29.54               | 1.32                      |
| Frankfurt am Main | Dār Kulayb | 13.20     | 2.66                      | 19.71    | 49.33                | 0.91    | 13.20            | 0.00                 | 2.66                      |
| Athens            | Milan      | 8.40      | 0.97                      | 4.37     | -47.95               | 0.48    | 3.77             | -55.14               | 0.36                      |
| Frankfurt am Main | Melbourne  | 101.49    | 15.60                     | 94.11    | -7.27                | 6.68    | 76.99            | -24.14               | 8.38                      |


#### **Results for Selected Routes**


Table with CE of ten exemplary paths between city pairs for all three routing methods. The change of the carbon cost compared to the baseline method in percent is shown in columns  $\Delta_{\text{Base}}$ .

The data is averaged over 24h across four days in four different months (January, April, June, October).

## **CE over Time**

Variation across the year





gCO<sub>2</sub>/GB for a single hour across all days of the year 2024, mean and SD of Lowest CI

paths

### Routes and their distances (km): From City To City Raseline

| 1.1         | Tom City         | 10 City    | Dapanne | DITOT. RESP | TOWER OT |
|-------------|------------------|------------|---------|-------------|----------|
| - Fr        | rankfurt am Main | Melbourne  | 33647   | 20678       | 32433    |
| <b>—</b> To | okyo             | São Paulo  | 35292   | 24342       | 26568    |
| - C         | hicago           | Jakarta    | 35606   | 20968       | 31944    |
| → Si        | ngapore          | Zürich     | 19929   | 12016       | 19408    |
| <b>—</b> Lo | os Angeles       | Zaragoza   | 14761   | 11048       | 15414    |
| - A:        | msterdam         | San Jose   | 24981   | 11106       | 13501    |
| <b>—</b> Fr | rankfurt am Main | Dār Kulayb | 9988    | 5743        | 9988     |
| <b>→</b> Se | eattle           | Stockholm  | 15365   | 11475       | 11493    |
| A           | thens            | Milan      | 3105    | 1824        | 1905     |
| — D         | ublin            | Stockholm  | 2671    | 2149        | 2156     |

Shortest

Connect on

LinkedIn



Inwest CI