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Abstract

AI-driven applications require massive amounts of training data that are not neces-
sarily located close to the computational infrastructure that processes them. The
energy consumption of transmitting data, both for training and for routine applica-
tions of deployed AI methods, can be substantial, but is often overlooked. However,
carbon emissions from data transfers could be reduced through carbon-aware
routing that selects lower-emission paths through the network. These paths are
selected based on the carbon intensity and the time of day in the countries whose
network infrastructure is used along the path, reflecting the country-specific share
of green energy. Here, we present a carbon-aware routing based on a weighted
graph representation of the global internet infrastructure where time-dependent
edge weights capture both the energy consumption and carbon emissions associated
with data transmission across submarine cables and terrestrial links. We performed
an empirical evaluation of the savings that could be achieved if such a routing
was implemented in practice, showing that the carbon emissions of data transfer
could be reduced by on average 40.07% if the "greenest" path was chosen over
the baseline. Our work raises awareness for the fact that cloud computing causes
substantial carbon emissions through the data transfer alone, and that intelligent
routing could serve to reduce the carbon footprint of AI in the future.

1 Introduction
The exponential growth in artificial intelligence (AI) applications has created unprecedented demands
on global data transmission networks: Modern AI training requires massive datasets that can span
terabytes to petabytes, while the data volumes associated with the operational use of deployed
models, such as in medicine [11], add up to even larger amounts in the long run. As the world’s
high-performance AI infrastructure is concentrated in a limited number of locations and countries [5],
these data often need to be transferred across vast geographical distances to reach specialized compute
clusters. Data centers and telecommunication networks each account for approximately 1-1.5% of the
global electricity consumption [7, 8], however the carbon footprint of an individual data transmission,

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025.



such as from a user to a data center, has so far received limited attention.
Internet data transfer generates substantial carbon emissions through the energy consumption of
the network infrastructure. Estimates vary but converge around 0.06-0.2 kWh per gigabyte of data
transmitted [1, 2, 9], translating to approximately 15-50 grams of CO2 and equivalents (CO2eq) per
gigabyte depending on the carbon intensity of electricity grids. With global internet traffic projected
to continue growing exponentially [10], and AI contributing increasingly to this demand, there is a
growing need for carbon-aware data transmission strategies.

Recent research has demonstrated the feasibility and benefits of carbon-aware routing in computer
networks. Sawsan El-Zahr et al. showed that carbon-aware routing algorithms can achieve substantial
carbon footprint reductions by considering both the energy consumption characteristics of network
equipment and the temporal variability of regional electricity grid carbon intensity [15]. Similarly,
carbon-aware global routing in path-aware networks has shown potential for 20% emission reductions
through intelligent path selection [13].
The carbon intensity of electricity varies drastically across geographical regions and temporal scales.
In 2024, the average carbon intensity ranged from below 20 gCO2/kWh in regions with a high contri-
bution of renewable energies to over 800 gCO2/kWh in coal-dependent regions [3]. This variability
creates opportunities for intelligent routing algorithms that can leverage cleaner energy sources along
different network paths. Furthermore, the dynamic nature of renewable energy generation introduces
temporal variations in carbon intensity that can be exploited for time-aware routing strategies.
Our Contribution: We propose a comprehensive framework for analyzing carbon emissions from
global data transmission networks, with a particular focus on the transfer of large datasets. Our
approach models the internet as a weighted graph where each edge represents a physical cable con-
nection. The graph exhibits dynamic behavior as carbon intensities fluctuate with changing electricity
generation mixes. Our framework enables the evaluation of greedy path selection algorithms that can
achieve reductions of on average 40.07% in carbon emissions compared to traditional shortest-path
routing and a real-world routing baseline. By considering both the spatial distribution of network
infrastructure and the temporal variability of regional carbon intensities, our approach provides
a foundation for practical carbon-aware routing protocols that can be implemented in real-world
internet infrastructure.

2 Methodology
Data We construct a comprehensive model of the internet’s physical infrastructure, representing
both terrestrial and submarine cables using geospatial and emission data. Our analysis integrates
heterogeneous datasets to enable scenario-driven evaluation of carbon-aware routing algorithms. We
source cable topology data from several public resources: terrestrial network data was obtained
from the ITU Broadband Map [6], with information on the endpoints, physical routes, and lengths
of individual cable segments; for submarine cable connectivity, we utilize detailed geographic
metadata from the Submarine Cables Map project [12], which provides paths and landing sites
for intercontinental links. Each cable, whether terrestrial or submarine, is mapped to the specific
countries it traverses, enabling precise assignment of region-specific environmental properties. While
country information for the terrestrial cables is provided, for the submarine cables we consider the
following rule to assign countries responsible for providing the electricity and thus responsible for
the carbon emissions: each country with a landing point of the given cable is equally responsible for
the electricity provided to each segment of the cable.

In addition to the graph describing the cable infrastructure, we utilize a temporal dataset capturing the
hourly carbon intensity of electricity generation for each country worldwide. Carbon intensity values
measured in grams of CO2 per kilowatt-hour (gCO2/kWh) were obtained from Electricity Maps [3],
which compiles real-time and historical CSV records of grid composition and emission rates. This
enables our model to reflect both geographic and temporal variability in the emissions associated
with data transmission.
Methods Building on these datasets, we represent the global network as a weighted graph G =
(V,E), where each vertex denotes a network location (city or landing point of an undersea cable)
and each edge encodes a cable segment. The weight of each edge is analytically constructed to
approximate the environmental cost of transmitting data over that particular path. Specifically, for
a given data volume, the weight assigned to edge e corresponds to the product of the length of the
cable, the data volume, a literature-derived metric for energy consumption per gigabyte-kilometer
(kWh/GB · km) [4], and the carbon intensity of the jurisdiction through which the cable segment
passes:
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we = Energy consumption

(
kWh

GB · km

)
× Cable lengthe(km)×

×Data volume (GB)× Carbon Intensity c,t

(
gCO2

kWh

)
, (1)

where e is the edge or cable section in the cable graph, c is a country in which the edge is located, t
is the date and time of the data transmission. The time dependency enables a dynamic reassignment
of edge weights for any chosen hour, following e.g. the changes in solar energy production in the
course of the day.

To analyze the potential for emission reductions, we implement two path selection strategies for
simulated data transfers between arbitrary endpoints: (1) Shortest path: Shortest path routing, which
minimizes the sum of the cable lengths, and (2) Lowest carbon intensity (CI) path: Carbon-optimal
path selection, which aims to minimize the total emissions incurred for a given data transfer.
Path computation leverages standard algorithms for weighted graphs, such as Dijkstra’s algorithm,
adapted to handle time-dependent and heterogeneous edge weights as dictated by hourly emission
profiles. For cables crossing multiple national borders, segments are treated separately to associate the
appropriate carbon intensity for each portion. For each transfer scenario and hourly carbon intensity
snapshot, we calculate and compare the estimated energy usage and carbon emissions incurred by
both routing strategies. While the model does not capture network traffic, congestion, or operational
constraints, its purpose is to estimate the upper bound of emission savings that could be achieved
under real-world electricity mix variability.
Baseline path: The baseline is defined as traced network routes between two servers. The My
Traceroute (MTR) service from PerfOps was used to observe the intermediate servers (hops) passed
by IP packets on their way from the source, a server hosted by PerfOps, to the destination, an Amazon
Web Services (AWS) S3 server. Each of these hops was geolocated using the website ipinfo.io to
determine its physical location. To ensure a fair comparison, we then applied Dijkstra’s algorithm to
interpolate the paths between MTR-measured hops, selecting the sequence of links with the lowest
possible carbon cost. This construction effectively grants the baseline the advantage of always
choosing the most carbon-efficient route available among the observed hops. By defining the baseline
in this way, we provide a conservative reference point against which our model can be evaluated.

3 Results

(a) Los Angeles,USA to Zaragoza,Spain with carbon costs
38.16, 51.67 (+35.38%), 22.41 (-41.29%)

(b) Dublin, Ireland to Stockholm, Sweden
with carbon costs 2.93, 2.55 (-13.14%), 2.07
(-29.54%)

Figure 1: Baseline, Shortest and Lowest CI (ours) paths are shown for two exemplary routes. The
carbon costs of the paths (gCO2/GB and relative change compared to Baseline) are provided in the
caption in the respective color. Each country is colored according to its carbon emissions at the time
of routing, from highest in dark brown to lowest in green (color legend under under left figure).

We computed 670 routes between international locations and compared the carbon-optimal Lowest
CI path (ours) to the Shortest path and the Baseline path. Figure 1 visualizes exemplary routes and
their carbon emissions. In Figure 2, we show the carbon emissions incurred by the carbon-optimal
path compared to the baseline. Matching pairs (routes between the same locations) are connected
by lines. For the majority of routes (green lines), we observed a pronounced decrease in carbon
emissions with respect to the baseline. Only for few routes (yellow), in particular those that already
had low emissions for the baseline, no decrease could be observed. Similarly, we observed reduced
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Figure 2: Carbon emissions in gCO2/GB for Baseline vs. Lowest CI (ours) (N=670) and Shortest vs.
Lowest CI (ours) (N=648: shortest paths may go through regions without CI information).
Mean (standard deviation) emissions for Baseline: 46.89 (49.05), Lowest CI: 28.1 (25.34) and
Shortest: 43.98 (32.68). Corresponding pairs of routes are connected by lines. Green lines: reduction
in carbon emissions; yellow lines: equal carbon emissions.
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Tokyo to São Paulo
Singapore to Zürich
Amsterdam to San Jose
Chicago to Jakarta
Los Angeles to Zaragoza
Seattle to Stockholm
Dublin to Stockholm
Frankfurt am Main to D r Kulayb
Athens to Milan
Frankfurt am Main to Melbourne

Figure 3: For each hour (measurements on 6th of January, April, June, and October to capture
seasonal changes), mean and SEM of Lowest CI paths connecting selected city pairs.

carbon emissions for the majority of routes when compared to the shortest path (Figure 2).
While Figure 2 reports carbon emissions averaged over the hours of the day, Figure 3 visualizes the
carbon emissions of selected routes over time: Hourly fluctuations of renewable energy production
can lead to changes in carbon intensity of the paths by the hour. It is possible to combine weather data
with historical carbon emission data to accurately predict the carbon intensity of the region that uses
a high percentage of renewable energy sources to provide electricity [14], thus enabling an efficient
time-dependent carbon-aware data transmission.

4 Conclusion
By incorporating the temporal and spatial heterogeneity of electricity grid carbon intensity into the
routing process, we demonstrate that significant reductions in emissions can be achieved compared
to the baseline, a realistic approximation of data transmission via internet cables. Our graph-based
framework demonstrates how carbon-aware routing can reduce the carbon emissions of data transfer
by on average 40.07% (over the baseline: Figure 2) through aligning network traffic with the
availability of cleaner energy sources. As cloud data centers and AI hardware are concentrated in a
limited number of countries [5], AI computations cause substantial data transmission traffic in the
form of huge training datasets or through daily operational use. Reducing the carbon emissions of AI
thus requires carbon-optimized computations as well as carbon-optimized routing.
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A Further Visualizations and Analysis

Additional exemplary routes: Even the lowest carbon cost for the baseline in 24 hours is greater than
the carbon cost of the optimized Lowest CI: Figure 4. We provide examples for the lowest carbon
intensity paths in Figure 5, for baseline paths in Figure 6 and for shortest paths in Figure 7 for the
same city pairs as in Figure 3. Details on the carbon costs are available in Table 1.
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(a) Amsterdam to San Jose
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(b) Chicago to Jakarta
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(c) Tokyo to São Paulo
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(d) Frankfurt am Main to Melbourne

Figure 4: For each hour (measures on 6th of January, April, June, and October to capture seasonal
changes), mean and SEM of carbon emissions for exemplary routes are shown for the following
scenarios:Baseline (•) path, Shortest (□) path, and Lowest CI (⋄) path.
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Figure 5: Lowest CI paths for the 10 city pairs in Table 1.

Figure 6: Baseline paths for the 10 city pairs in Table 1.
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Figure 7: Shortest paths for the 10 city pairs in Table 1.

8



Ta
bl

e
1:

C
om

pa
ri

so
n

of
ca

rb
on

em
is

si
on

s
of

th
e

pa
th

s
be

tw
ee

n
ci

ty
pa

ir
s

fo
rt

he
th

re
e

di
ff

er
en

tm
et

ho
ds

.T
he

ch
an

ge
of

th
e

ca
rb

on
co

st
co

m
pa

re
d

to
th

e
ba

se
lin

e
m

et
ho

d
in

pe
rc

en
ti

s
sh

ow
n

in
th

e
co

lu
m

ns
"∆

vs
B

as
el

in
e"

.T
he

da
ta

is
av

er
ag

ed
ac

ro
ss

fo
ur

da
ys

in
fo

ur
di

ff
er

en
tm

on
th

s
(J

an
ua

ry
,A

pr
il,

Ju
ne

,O
ct

ob
er

)a
nd

ov
er

th
e

24
ho

ur
s

of
ea

ch
da

y.

Fr
om

C
ity

To
C

ity
B

as
el

in
e

Sh
or

te
st

L
ow

es
tC

I(
ou

rs
)

gC
O

2/
G

B
st

d
(±

)
gC

O
2/

G
B

∆
vs

B
as

el
in

e
(%

)
st

d
(±

)
gC

O
2/

G
B

∆
vs

B
as

el
in

e
(%

)
st

d
(±

)
To

ky
o

Sã
o

Pa
ul

o
76

.7
7

4.
08

78
.2

6
1.

95
12

.7
2

58
.0

5
-2

4.
39

5.
57

Si
ng

ap
or

e
Z

ür
ic

h
32

.7
7

4.
19

55
.6

5
69

.8
0

2.
51

31
.9

5
-2

.5
1

3.
31

A
m

st
er

da
m

Sa
n

Jo
se

39
.0

7
3.

44
45

.6
9

16
.9

2
4.

26
18

.0
6

-5
3.

79
1.

99
C

hi
ca

go
Ja

ka
rt

a
12

4.
02

9.
18

88
.3

5
-2

8.
76

5.
05

46
.6

6
-6

2.
37

2.
97

L
os

A
ng

el
es

Z
ar

ag
oz

a
38

.1
6

1.
58

51
.6

7
35

.3
8

2.
77

22
.4

1
-4

1.
29

1.
39

Se
at

tle
St

oc
kh

ol
m

15
.2

8
1.

81
9.

09
-4

0.
51

0.
88

9.
07

-4
0.

67
0.

88
D

ub
lin

St
oc

kh
ol

m
2.

93
2.

09
2.

55
-1

3.
14

1.
61

2.
07

-2
9.

54
1.

32
Fr

an
kf

ur
ta

m
M

ai
n

D
ār

K
ul

ay
b

13
.2

0
2.

66
19

.7
1

49
.3

3
0.

91
13

.2
0

0.
00

2.
66

A
th

en
s

M
ila

n
8.

40
0.

97
4.

37
-4

7.
95

0.
48

3.
77

-5
5.

14
0.

36
Fr

an
kf

ur
ta

m
M

ai
n

M
el

bo
ur

ne
10

1.
49

15
.6

0
94

.1
1

-7
.2

7
6.

68
76

.9
9

-2
4.

14
8.

38

9


	Introduction
	Methodology
	Results
	Conclusion
	Further Visualizations and Analysis

